
Modeling the Spread and Prevention of Malicious Mobile Code Via Simulation
CS-2004-15

by
Christopher Brian Shirey

Bachelor of Science
Computer Science

Florida Institute of Technology
2000

A thesis submitted to
Florida Institute of Technology

in partial fulfillment of the requirement for the degree of

Master of Science
in

Computer Science

Melbourne, Florida
December, 2004

We the undersigned committee hereby recommended
that the attached document be accepted as fulfilling

in part the requirements for the degree of
Master of Science of Computer Science.

“Modeling the Spread and Prevention of Malicious Mobile Code Via
Simulation”

a thesis written by Christopher Brian Shirey

Richard Ford, Ph.D.
Research Professor, Computer Science

Committee Chairperson

William D. Shoaff, Ph.D.
Associate Professor and Department Head, Computer Science

William Allen, Ph.D.
Assistant Professor, Computer Science

Muzaffar A. Shaikh, Ph.D.
Professor and Department Head, Engineering Systems

Abstract

Title: Modeling the Spread and Prevention of Malicious Mobile Code
Via Simulation

Author: Shirey, Christopher Brian
Major Advisor: Richard Ford, Ph.D.

Malicious mobile code causes billions of dollars every year in damages,
and that cost keeps increasing. Traditional signature-based anti-virus software
is a reactive solution that can not detect fast spreading malicious code quickly
enough to prevent widespread infection. If we hope to prevent widespread in-
fection of future malicious mobile code, new prevention techniques must be de-
veloped that either stop a new infection completely, or at least limit the spread
until signature-based anti-virus software can be updated.

Simulators exist that model the spread of malicious mobile code, but
none currently exists that can efficiently model host-based and network-based
spread prevention techniques and the effect that those techniques have on the
spread of the infection. This thesis presents Hephaestus, which is a new sim-
ulator framework designed to meet these requirements and be flexible enough
to meet future requirements. This thesis also presents the results of four ex-
periments: one that models spread with no prevention techniques applied, one
that models the effects of a monoculture on spread, one that models the effect
of lossy detection, and one that shows the effects of tarpits.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement and Our Approach 2
1.3 Brief Summary of Results and Contributions 2
1.4 Organization of the Thesis . 3

2 Previous Methods of Modeling the Spread of Malicious Code 4
2.1 Analytical Models . 5

2.1.1 Early Work . 5
2.1.2 The SIR and SIS Models 7
2.1.3 The Kill Signal Model 8
2.1.4 The PSIDR Model . 9
2.1.5 The Random Constant Spread Model 10
2.1.6 The AAWP Model . 12

2.2 Monte Carlo Simulations . 14
2.2.1 The Weaver Simulator 14
2.2.2 NWS . 14
2.2.3 DDoSVax . 15
2.2.4 SSF.App.Worm . 15
2.2.5 Shortcomings of the Previous Simulators 16

3 Hephaestus 18
3.1 Overview of Hephaestus . 18
3.2 Components Making Up the Hephaestus Framework 19

3.2.1 HephaestusEngine . 21
3.2.2 Views . 22
3.2.3 Command Line Interface 26
3.2.4 Win32 User Interface . 27
3.2.5 ScPl . 32
3.2.6 Actor Libraries . 32

3.3 How Hephaestus Can Be Enhanced and Extended 33

iv

3.3.1 Configuration Files . 34
3.3.2 Adding Actor Libraries 35

3.4 A Simple Walk-Through Tutorial of a Hephaestus Experiment . 36

4 Experiments Using Hephaestus 43
4.1 No Prevention Measures . 43
4.2 Monoculture . 49
4.3 Lossy Detection . 53

4.3.1 No Suppression . 54
4.3.2 Ten Outgoing Infections Per Node 55
4.3.3 Five Outgoing Infections Per Node 57
4.3.4 Three Outgoing Infections Per Node 59

4.4 Tarpits . 61

5 Future Development Plans 67

6 Summary 69
6.1 Our Results And Contributions 69
6.2 Final Thoughts . 70

A Analysis of the Mersenne Twister Pseudorandom Number Gen-
eration Algorithm 71
A.1 The Mersenne Twister Pseudorandom

Number Generation Algorithm 71
A.2 Frequency Test . 73
A.3 Runs Test . 75

A.3.1 Number of Runs Up and Runs Down 75
A.3.2 Number of Runs Above and Below the Mean 76
A.3.3 Length of Runs . 76

A.4 Autocorrelation Test . 77
A.5 Gap Test . 78
A.6 Poker Test . 80
A.7 Completeness Test . 82
A.8 Conclusions . 82
A.9 Source Code Used for the Randomness Tests 82

B Source Code For An Actor Library 98
B.1 LimitedConnectionsNodeLibrary.h 98
B.2 LimitedConnectionsNodeLibrary.cpp 99
B.3 LimitedConnectionsNode.h . 100
B.4 LimitedConnectionsNode.cpp 101
B.5 LimitedConnectionsNodeLibrary.def 103

v

B.6 LimitedConnectionsNodeLibrary.vcproj 103

vi

List of Figures

2.1 The Random Constant Spread Model Accuracy for Code Red . 11
2.2 The Random Constant Spread Model Accuracy for SQL Slammer 12
2.3 The AAWP Compared to the Epidemiological Model 13

3.1 Components of the Hephaestus Simulation Framework 21
3.2 Initial Screen When the Win32 User Interface is Launched . . . 28
3.3 The Win32 User Interface After a Configuration File Has Been

Selected . 29
3.4 The Win32 User Interface Progress Window While Running a

Simulation . 30
3.5 The Win32 User Interface Results Window 31
3.6 Nodes infected at each timestep with no connection limitation . 37
3.7 Nodes infected over time with no connection limitation 38
3.8 Nodes infected at each timestep with a connection limit of 10 . . 39
3.9 Nodes infected over time with a connection limit of 10 39
3.10 Nodes infected at each timestep with a connection limit of 5 . . 40
3.11 Nodes infected over time with a connection limit of 5 40
3.12 Nodes infected at each timestep with a connection limit of 3 . . 41
3.13 Nodes infected over time with a connection limit of 3 41
3.14 Nodes infected at each timestep with a connection limit of 2 . . 42
3.15 Nodes infected over time with a connection limit of 2 42

4.1 Infectable nodes infected at each timestep using Hephaestus where
all 100,000 nodes are infectable 44

4.2 Infectable nodes infected over time using Hephaestus where all
100,000 nodes are infectable . 45

4.3 Results of the Weaver simulator 45
4.4 Infectable nodes infected at each timestep using Hephaestus with

a 75,000 to 25,000 infectable vs uninfectable ratio 46
4.5 Infectable nodes infected over time using Hephaestus with a 75,000

to 25,000 infectable vs uninfectable ratio 46

vii

4.6 Infectable nodes infected at each timestep using Hephaestus with
a 50,000 to 50,000 infectable vs uninfectable ratio 47

4.7 Infectable nodes infected over time using Hephaestus with a 50,000
to 50,000 infectable vs uninfectable ratio 47

4.8 Infectable nodes infected at each timestep using Hephaestus with
a 25,000 to 75,000 infectable vs uninfectable ratio 48

4.9 Infectable nodes infected over time using Hephaestus with a 25,000
to 75,000 infectable vs uninfectable ratio 48

4.10 Infectable nodes infected at each timestep using Hephaestus with
a 1,000 to 99,000 infectable vs uninfectable ratio 49

4.11 Infectable nodes infected over time using Hephaestus with a 1,000
to 99,000 infectable vs uninfectable ratio 49

4.12 Monoculture plot for a constant 100,000 nodes under Hephaestus 51
4.13 Monoculture plot from Dr. Richard Ford’s Monoculture article . 52
4.14 Face-on monoculture plot for a constant 100,000 nodes under

Hephaestus . 53
4.15 Graph of virus spread with no outgoing infection attempt sup-

pression . 55
4.16 Graph of virus spread while only allowing 10 outgoing infection

attempts per infected node . 56
4.17 The difference in the total number of infected nodes between

no suppression and limiting the outgoing infection attempts per
infected node to 10 . 57

4.18 Graph of virus spread while only allowing 5 outgoing infection
attempts per infected node . 58

4.19 The difference in the total number of infected nodes between
no suppression and limiting the outgoing infection attempts per
infected node to 5 . 59

4.20 Graph of virus spread while only allowing 3 outgoing infection
attempts per infected node . 60

4.21 The difference in the total number of infected nodes between
no suppression and limiting the outgoing infection attempts per
infected node to 3 . 61

4.22 Graph of virus spread with tarpits and 2 percent of the nodes
infectable . 63

4.23 Graph of virus spread with tarpits and 5 percent of the nodes
infectable . 64

4.24 Graph of virus spread with tarpits and 10 percent of the nodes
infectable . 65

4.25 Graph of virus spread with tarpits and 25 percent of the nodes
infectable . 66

viii

List of Tables

A.1 Random Numbers Generated for the Frequency Test 74
A.2 Sorted Numbers for the Frequency Test 75
A.3 Numbers Generated for the Autocorrelation Test 78
A.4 Numbers Generated for the Gap Test 79
A.5 Numbers Generated for the Gap Test 79
A.6 Gap Test Data . 80
A.7 Numbers Generated for the Poker Test 81
A.8 Calculations for the Poker Test 81

ix

Dedication

Waiting for 18 months which include pregnancy and a newborn for a
project to be complete while our toddler is crying and needy can test the limits
of one’s patience. Throughout this time though, my wife’s support for me and
for this work has been unwavering, and so the following work is dedicated to
my wife Kriste, without whose love, patience, and understanding this would not
have been possible.

x

Acknowledgments

Throughout the long and frustrating process of writing this thesis, many
people have helped support and encourage me to continue, and I can never
thank them enough. In particular, Dr. Richard Ford deserves special thanks for
strongly encouraging me to push for excellence in this work rather than giving
up prematurely when I got frustrated. This thesis would be much-lacking and
poor without his motivation and support.

The work done on this thesis was funded by a grant from the Cisco
Critical Infrastructure Assurance Group, and so I thank them sincerely. I have
also received great support from Security Innovation. They have sponsored
my graduate studies and have always been understanding and supportive. In
particular Jason Taylor and Fred Orlando, my direct supervisors over the course
of writing this thesis, have been nothing but encouraging. A special thanks also
is extended to Helayne Ray, whose proofreading greatly improved the quality
of this thesis.

xi

Chapter 1

Introduction

This thesis explores the current state of malicious code modeling as it applies to
prevention of widespread infection. We extend this prior research to provide a
new framework for simulating the effects of various prevention techniques on the
spread of malicious code. We call this new framework Hephaestus, named for the
chief blacksmith of Greek gods who, among other things, created spontaneously
operating automaton (anvils and bellows in his case) to help do his work for
him[1].

1.1 Motivation

For approximately two decades malicious applications such as viruses have been
damaging computers and data, and have been frustrating users of those com-
puters. Last year, the total cost of viruses exceeded $50 billion[2]. Anti-virus
software has become widely used, especially in large corporations, but the prob-
lem of stopping the malicious applications before they infect machines or damage
valuable data continues to grow. Clearly, anti-virus software alone is not enough
to solve the damaging effects of these applications.

New techniques can be developed, including proactive techniques, to help
alleviate the problem, but there are issues that need to be addressed before
those techniques can be installed and executed on the end-users’ machines. The
main issue is that a reliable method of testing the new technique needs to be
developed. Solving this problem is not simple because the best way to test a
new prevention technique is to apply it to real viruses on real networks. This
is not a scenario most companies or users would appreciate, especially if the
new technique does not work. The technique could be applied to a network
disconnected from the Internet, but that network will never be as complex as
the Internet, and the cost of cleaning and maintaining that network would be
high. Even if the technique was tested in a network disconnected from the

1

Internet, the problem of verifying that the new technique significantly slows or
stops the spread of a virus over a larger network or even the Internet would still
remain.

By studying the spread of previously released malicious applications over
real networks, researchers have found ways to predict the spread of similar fu-
ture malicious applications. This can be accomplished using one of two different
approaches - through using computer simulation or via analytical methods. To
this point, none of these models have provided an efficient way to simulate mul-
tiple types of malicious applications over large networks while also simulating
the effects of applied prevention techniques.

1.2 Problem Statement and Our Approach

The central problem that we address in this thesis is the lack of an efficient way
to simulate multiple types of malicious applications over large networks that is
also capable of simulating the effects of applied prevention techniques.

The approach we have taken to solve this problem is to create a discrete-
time model, Monte Carlo, mixed abstraction level malicious application simu-
lation framework. This framework is easy to use and yet powerful and flexible
enough to test the efficiency of spread prevention techniques without use of an
actual network, disconnected or otherwise.

1.3 Brief Summary of Results and Contribu-

tions

We have developed a framework capable of solving the aforementioned problem.
We have managed to do so in a way that is both easy to use and yet powerful
and flexible enough to simulate various prevention techniques.

We have executed various experiments to test the ability of the frame-
work, and have gone to great lengths to describe how others could perform
different experiments using the framework. As an additional contribution we
have created a tool that can be used by educators to instruct students about
how to think about the spread of malicious applications and ways to prevent
that spread. By providing this, if we have enabled a new generation of students,
future researchers, and future industry leaders to think practically about ways
to help solve the problem of spreading of damaging malicious applications, then
our contributions will have been greater than we could have hoped for.

2

1.4 Organization of the Thesis

In Chapter 2 we describe how previous researchers have thought of malicious
code spread and how it can be modeled or simulated. We describe what the
major research has revealed about the way malicious code spreads, and also
describe some hurdles that have yet to be cleared.

In Chapter 3 we introduce and explain the Hephaestus simulation frame-
work developed to allow researchers to be able to simulate the spread of mali-
cious code as well as test potential spread prevention techniques. This frame-
work is simple enough to be used by professors as a teaching tool, yet powerful
and flexible enough to be used in industry to discover novel spread prevention
techniques.

The Hephaestus simulation framework allows powerful experiments to
be run easily. Chapter 4 shows how to run these experiments using Hephaestus
and also shows how to examine and interpret the results of those experiments.

Despite the effort put forth in the development of Hephaestus, there is
still much work that can be done to enhance its capabilities further. Chapter 5
outlines these future development tasks.

In Chapter 6 we present a summary of our work. We then conclude
with two appendix chapters. In Appendix A, we provide proof that the random
number generator the framework is using is in fact a very good random number
generator. In Appendix B, we provide full source code to an actor library
for readers to use as a reference when adding functionality to the Hephaestus
framework.

3

Chapter 2

Previous Methods of Modeling
the Spread of Malicious Code

In 1981, a virus known as Elk Cloner began spreading on Apple II floppy disks[3].
Early viruses such as Elk Cloner did not cause much financial damage to the
computers and organizations that had become infected. Since that time mil-
lions of new computers became Internet-enabled and thousands of new viruses
have been released. Many of these viruses have been designed to deliberately
damage the machines they infect by deleting or corrupting files and data from
the machines. These damages, intentional or otherwise, have become increas-
ingly expensive over time. Trend Micro reported in early 2004 that the financial
impact of all virus infections in 2001 totaled $13 billion. In 2002 and 2003 those
numbers grew to between $20 and $30 billion for 2002 and $55 billion for 2003[2].
The Code Red virus alone had cost an estimated $1.2 billion within the first 2
weeks of its release in July 2001 according to USA Today[4].

Due to the cost of these viruses the first line of defense against these
malicious programs has become anti-virus software that will prevent infection
by known viruses and clean old infections off the users’ machines. However,
despite the fact that most Internet users have signature-based anti-virus soft-
ware installed on their computers, the cost of the viruses each year continues to
climb. This continued increase is a strong indication that anti-virus products
alone are not enough to protect Internet-enabled machines. The primary reason
that anti-virus software is not sufficient to prevent infections is that it only de-
tects existing viruses. It does this by matching unique signatures against files on
the target machine. These signatures take some time to develop and distribute
to the users’ machines. As a result no newly created virus will be immedi-
ately detected and stopped by the software until the company that produces
the anti-virus software can produce a signature for the virus and distribute it
to the users’ machines. Clearly, new methods of protecting users and machines

4

against malicious code need to be created.
These new methods can be designed to protect a potentially infected

machine by placing software on the machine directly, but other options exist as
well. Protection methods that are distributed in nature could also be developed,
protecting entire networks from attack. One problem with inventing new dis-
tributed prevention techniques is that it can be very difficult to test these new
ideas without the cost of a creating and repeatedly cleaning a controlled envi-
ronment in which to let viruses loose[5]. Prevention measures that are installed
on the end-users’ computers are much easier to test than distributed ones since
there is only a single machine involved rather than a network of machines. If we
want to be able to test new distributed spread prevention techniques without
actually releasing viruses in a test network we need to be able to model and sim-
ulate the ways viruses spread in general. Once they are developed those models
and simulations can be applied to our new prevention techniques. As an added
benefit, creating the models and simulations allows researchers to predict global
infrastructure failures when the Internet is exposed to fast moving viruses and
worms[6]. Many attempts at modeling and simulating computer viruses have
already been made by various researchers. This chapter details those attempts
and analyzes the shortcomings that these models and simulations have if they
are used to discover and test malicious code spread prevention techniques.

2.1 Analytical Models

Much of the research previously done on virus spread has primarily been done
using analytical models and numerical computations for describing the rate
which a virus will spread. These models are then implemented in computer
simulations and compared against real-world virus spread data to determine a
particular model’s accuracy.

2.1.1 Early Work

Some of the earliest work in modeling the spread of viruses was done by Fred
Cohen. He realized and demonstrated that infection can spread to the transitive
closure of the information flow between systems. In other words if computer
A can infect computer B , and computer B can infect computer C , then com-
puter A can infect computer C indirectly[7][8]. He also stated that the only
systems with potential for complete protection from a viral attack are machines
with “limited transitivity and limited sharing, systems with no sharing, and
systems without general interpretation of information (Turing capability)”[7].
Gleissner created a model of spread on a multi-user system and was able to
verify that spread does in fact apply to the transitive closure of the information

5

flow, and also showed that this spread could happen at an exponential growth
rate[8][9]. Peter Tippett suggested later that computer viruses could spread at
an exponential rate since many other population models exhibit similar growth
patterns, but he never presented a model to back up his claims, and the fact
that real viruses do not conform to an exponential growth rate has caused many
to doubt his claims[8][10].

In 1990, Solomon created a model of virus spread that contradicted the
idea that viruses can spread exponentially between systems. He explained that
there are three factors that can affect the probability that a given virus has
infected a given machine, and those factors are listed below[11]:

1. The percentage of currently infected individuals

2. The readiness with which the virus under consideration can replicate
(called infectivity)

3. The degree to which the machine in question has contact with the popu-
lation of computers

Solomon also listed 2 factors that affect the percentage of currently infected
individuals, listed below:

1. The rate at which computers are becoming infected

2. The length of time that they stay infected

Based on these factors Solomon developed an equation that showed that
the rate of infection in previously uninfected machines is proportional to the
number of currently infected machines, the number of uninfected machines,
and to the probability of infection. The equation also shows that the rate of
infections being cleaned is proportional to the number of infected machines and
to the probability of detection. The equation follows:

dp

dt
= P (1− P)I − PD (2.1)

In equation 2.1 P is the percentage of machines that are infected with the virus,
I is the probability that a machine will become infected by contact with another
infected machine, and D is the probability that the virus is detected[11].

This model produces some interesting results. If we set dp
dt

to 0 we find
that either there is no infection and no spread of infection of the virus or that
P = 1 - D/I . This means that if D is less than or equal to I , the spread of
the infection will approach 0 and die out, but if I is greater than D the virus
will continue to spread until eventually all the potentially infected machines are
infected[11].

6

2.1.2 The SIR and SIS Models

Epidemiological models have often been used to attempt to predict the spread
of malicious programs in computer systems. Two of the most commonly used
epidemiological models are the Susceptible-Infected-Removed (SIR) and the
Susceptible-Infected-Susceptible (SIS) models. In the SIR model a system can
become infected once, and once the infection is removed it can never again be-
come infected. In the SIS model a system can repeatedly become infected and
have the infection removed[12].

Both the SIR and the SIS models are homogeneous, meaning that an
infected individual machine is equally likely to infect any of the susceptible
machines. This model works fine for many biological viruses like influenza in
which the disease is transmitted via casual contact but the analogy between
biological systems and computer systems does not hold as well for computer
viruses since program sharing is not homogeneous. Computer users generally
only share programs and files with a limited number of people, generally people
they know. The users never have contact with the vast majority of the world’s
computer users and therefore accurate models of computer virus spread need to
have the ability to model inhomogeneous spread[8].

The KW Directed Graph SIS Model

Kephart and White saw the discrepancy between homogeneous biological sys-
tems and inhomogeneous computer networks and developed a model based on
the SIS epidemiological model applied to directed graphs in 1994[8]. In this
model, called the KW model for the rest of this paper, each computer system
is represented as a node on a graph. Directed edges from a node n to other
nodes represent the computers that can be infected by n. Each node has a
property which specifies the rate that an infection can be cured and removed.
Similarly each edge has a property that specifies the infection rate from one
node to the node on the other end of the edge[8]. After developing the model
and then removing the details of the edges, their results were in agreement with
the classical SIS model, which is to be expected but was necessary to verify in
order to ensure their model was correct.

The development and testing of the KW model provided us with some
fundamental and important results. Although Cohen proved that a perfect
defense against computer viruses is impossible, the KW model shows that per-
fection is also not necessary in order to prevent the widespread infection of a
computer virus if the rate of detection and removal of infection is high relative
to the rate at which the virus propagates from one computer to another. This is
shown by proving that the known fact that a biological epidemic can only occur
if the infection rate exceeds a finite critical threshold also applies to computer

7

viruses as well. Kephart and White also discovered that the topology of the
graph has a profound effect on the ability of a virus to spread, and this could
not have been shown through modeling only homogeneous systems[8].

Wang and Wang’s Application of Timing Parameters to the SIR and
SIS Models

The models presented to this point have abstracted away two potentially impor-
tant timing variables - the infection delay and user vigilance. Infection delay
is simply defined as the amount of time between the instant the machine is
infected until it begins attempting to infect other machines. User vigilance is
defined as the amount of time users will be more cautious of potential viruses
once they have been infected. Introducing these variables simulates real-world
scenarios better than models that ignore this variable because after a user’s ma-
chine has become infected, they are much more wary of taking actions similar
to those that allowed their computer to become infected previously. This is es-
pecially true of viruses like email viruses which require some user action before
the infection will occur. In the classic SIR and SIS models as well as in the KW
model, these delays are both assumed to be zero. In other words, as soon as a
computer becomes infected in these models, that computer immediately begins
infecting other computers. This is not the case in real-world computer systems,
so to better model reality Wang and Wang enhanced the KW model taking into
account these parameters to determine what effect they would have on the rate
of spread of a virus[12].

By adding these two parameters to the models, two important results
that validate Wang and Wang’s desire to include the timing parameters in the
models are revealed. First, adding the infection delay increases the epidemic
threshold of the virus, meaning that modeling the infection delay makes an in-
fection die out before reaching epidemic levels more often than without modeling
it. Secondly, adding the user vigilance measure to the model does not change
the epidemic threshold in either direction. The spread of infection is slowed by
including either of these parameters in the model, but only the infection delay
has any impact on the epidemic threshold[12].

2.1.3 The Kill Signal Model

Although Kephart and White’s previous work ([8]) had revealed some impor-
tant discoveries, the KW model did not always accurately predict or simulate
the actual spread of a virus in the real world. There was such a lack of infor-
mation about the prevalence of real world viruses that highly respected experts
incorrectly estimated the spread of the Michelangelo virus in 1992 by more than
three orders of magnitude[13]. Kephart and White then created another spread

8

model to help more accurately estimate the prevalence of viruses and give anti-
virus software vendors new approaches to slowing the spread. The new model
is known as the Kill Signal Model.

In the previous epidemiological models, a virus is cured independently
of the other infected systems. But what would happen if a user noticed that
the machine they were using was infected and told several friends or coworkers
about the need for them to update and run their anti-virus software to scan for
that virus? If they followed the first user’s advice and the virus got detected
and prevented before their machines were infected, the virus would have a much
harder time spreading to epidemic levels. That scenario is the reasoning behind
the Kill Signal Model, and Kephart and White refer the first user’s warning to
the others about the virus as the “kill signal”[13]. Kephart and White tested
this model two different ways - one where the kill signal is delivered and acted
upon more quickly than the virus itself spreads and one where the kill signal is
not delivered and acted upon instantaneously.

When transmitted instantaneously, Kephart and White discovered that
a relatively low ratio of computers need to receive and act upon the kill signal
in order to prevent epidemic spread. In this scenario, as soon as the first ma-
chine became cured of the infection, it immediately sends the kill signals to its
immediate neighbors on the directed graphs of the KW model. Upon receipt
of the kill signal, the neighbors would become cured and send the kill signal to
all of their immediate neighbors and so on. In their experiments Kephart and
White found that with a received kill signal probability of less than 0.25, the
epidemic probability did not change significantly, but once it passed the 0.25
threshold, the epidemic probability abruptly drops off to zero. This means that
if 3 out of a node’s 10 neighbors receive and act upon the kill signal, extinction
of the virus in inevitable[13].

If the kill signal is not transmitted instantaneously, the kill signal can
be thought of as an anti-virus epidemic and the kill signal can then be modeled
and treated just like a regular virus in terms of the rate of spread except that
it has no intrinsic epidemic threshold and as such can not die out until desired
to do so. Once the kill signal is received on a machine, the machine will never
become infected again (as it already knows about the virus) and so the model
ultimately reduces to the SIR model[13].

2.1.4 The PSIDR Model

One thing missing from the other epidemiological models is that none of them
take into account the effect that installed, properly working anti-virus software
has on the spread of a virus. Williamson and Léveillé developed the Progressive
Susceptible Infectious Detected Removed (PSIDR) model to address this[14].

9

In the PSIDR model machines are assumed to be in one of four states -
Susceptible, Infectious, Detected (a state where the virus has been detected and
is no longer able to spread further), and Removed. Once the virus signature
is distributed to a given machine, the machine becomes Removed if its state
prior to receipt of the signature was Susceptible. If the prior state was Infected,
the machine then moves to the Detected state. The rate of virus spread in this
model is in essence a race between the virus spread and the anti-virus signature
spread. The signature spread has an initial disadvantage, however, because
of the lag time from virus outbreak until the virus signature is produced and
started being distributed.

The result of running experiments using this model is that distributing
signatures more quickly will lead to a smaller outbreak of the virus. The authors
conclude that clients should poll the signature servers more often than they
currently do, even to the point of suggesting that the servers should try to
push the signatures to its clients to further enhance the speed of the process of
signature distribution[14].

2.1.5 The Random Constant Spread Model

After Code Red II was released in 2001, Staniford, Paxson, and Weaver devel-
oped a model to describe and predict the rate which worms like Code Red would
spread. These are worms that repeatedly attempt to infect machines at random
Internet addresses. They found the following equation to fit the observed spread
well

a =
eK(t−T)

1 + eK(t−T)
(2.2)

where a is the proportion of machines already infected, K is the initial infection
rate, T is the time that the infection begins to spread, and t is the current
time[15]. The graph of actual scans versus the number predicted by this model
is shown in figure 2.1.

10

Figure 2.1: The Random Constant Spread Model Accuracy for Code Red

Serazzi and Zanero had studied the Random Constant Spread (RCS)
Model, but when the SQL Slammer worm appeared they noticed a problem.
They noticed that the RCS model fit the actual data well towards the beginning
of the outbreak, but as time went on the RCS model did not predict the spread
of SQL Slammer as well as they had expected (Figure 2.2)[6].

11

Figure 2.2: The Random Constant Spread Model Accuracy for SQL Slammer

They hypothesized that this discrepancy was due to the network becom-
ing overloaded with traffic and so the network had a bottleneck that prevented
the spread from following the RCS curve. Serazzi and Zanero then updated
the RCS model to take network bandwidth into account and verified that their
suspicions were correct[6].

2.1.6 The AAWP Model

Chen, Gao, and Kwait developed the Analytical Active Worm Propagation
(AAWP) model after noticing that the epidemiological models still fell short in
a few areas. First the epidemiological models use a continuous time differential
equation, meaning a newly-infected computer starts infecting other machines
before the computer itself is fully infected. This can produce inaccurate results
because it will show the virus spreading more quickly than in a real-world sce-
nario. Secondly, the epidemiological models do not take into account either a
patching rate or the time it takes to infect a machine. Note that the patching
rate is not necessarily the same as the death rate of a virus. The patching rate
is the rate at which machines become permanently cured of possible infection
from a particular virus, whereas the death rate is the rate at which a system
has the virus removed, and this removal may not be permanent. Lastly, the epi-

12

demiological models do not allow for the case where a single machine is being
infected by two or more infected machines at the same time[16]. The AAWP
model was developed to help alleviate these seen deficiencies and be a model
used to predict the spread of random scanning viruses. Although the AAWP
model is an analytical model, these realizations argue for a discrete time Monte
Carlo simulation approach to spread modeling as simulating the spread in this
way easily can alleviate their concerns.

In addition to adding the patching rate, the time it takes for a machine
to become infected, and the ability to have multiple machines infecting the same
machine simultaneously, the AAWP introduces a discrete time system in which
all events occur in one or more discrete time blocks rather than in fractions of
seconds. By making these changes, the results differed substantially compared
to the epidemiological models when attempting to model Code Red II. The
results are shown in Figure 2.3.

Figure 2.3: The AAWP Compared to the Epidemiological Model

The results of the experiments run using the AAWP model match very
closely to the actual reported spread of Code Red II. It also helps to solve the
“mystery” of virus research presented by White that the epidemiological models
predict far more widespread infection of many viruses than have actually been
seen in real world scenarios[17].

13

2.2 Monte Carlo Simulations

A non-analytical approach to modeling and predicting virus spread is by simula-
tion. This involves developing a computer program that tries to closely imitate
real-world scenarios. Monte Carlo simulations are simulations where values for
unpredictable variables are chosen by generating pseudorandom numbers when
that value is needed. The term Monte Carlo simulations comes from Monte
Carlo, Monaco, where casinos with games of chance are a main attraction[18].
This section describes several previously-developed Monte Carlo simulators.

2.2.1 The Weaver Simulator

The Weaver Simulator is a rather simple simulator written by Nicolas Weaver
to demonstrate the results of his research into the theoretical Warhol worm.
Warhol worms are defined by Weaver as “hyper-virulent active worms, capable
of infecting all vulnerable hosts in approximately 15 minutes to an hour”[19].
It employs a fully connected network where there is no network hardware to
consider and each connection has unlimited bandwidth. It allows infection at-
tempts by three methods - random scanning, permutation scanning, and parti-
tioned permutation scanning. This allows for the simulation of worms that start
by infecting a predefined “hit list” of machines before randomly attempting to
infect the rest of the network. Several options are configurable by the user such
as the number of vulnerable machines, the size of the initial population, the
number of scans per second, and the time it takes to infect a machine[19].

2.2.2 NWS

The Network Worm Simulator by Bruce Edigar is a framework for simulating
network worms, their spread, and their effect on the infected machines. The
framework is written in Perl and allows each worm to be written in Perl. It is
different from other simulators in the respect that user-specified Perl code can
be set to be executed on a machine when that machine becomes infected to
get a more realistic picture of the damage a simulated worm can induce. Each
node is directly connected to every other node on the network. There is no
network hardware or routes that the virus must pass through in order to get
from one node to another in the simulator. It uses either the SIS or SIR model
epidemiological model to switch between infection states depending on which
the user of the simulator chooses to use[20].

14

2.2.3 DDoSVax

DDoSVax is an ongoing project by the Computer Engineering and Networks
Laboratory, Swiss Federal Institute of Technology Zurich. The purpose of the
project is to detect and prevent both the infection phase and the denial of service
phase of Distributed Denial Of Service (DDoS) attacks in real-time[21].

They have written a simulator to simulate DDoS attacks and their pre-
vention measures. Their simulator plots the number of infected machines vs
time as well as the infection rate over time by default. It can model random
scanning, hit lists, and local forced scanning (scanning local nodes more often
than external nodes). It is written in Perl and does its plotting using GnuPlot.
The simulator has a large number of configurable parameters to change the
setup being simulated. Some of these parameters are total number of machines,
number of initially infected machines, a hit list, and TCP timeout.

The primary weakness of DDoSVax for our purposes is that the project
lacks the capability to simulate prevention measures on the target machines.
The project’s prevention measures are targeted towards network hardware rather
than attacked machines. Also, much of the simulator’s resources must be de-
voted to generating and tracking the network traffic rather than the effects of
the malicious application, as the simulator is designed to analyze network traffic
at the packet level.

2.2.4 SSF.App.Worm

SSF.App.Worm is an interface that works on top of the Scalable Simulation
Framework Network Models (SSFNet)[22]. It models the spread of specific
worms such as CodeRed or SQLSlammer over the Internet. It uses 2 abstrac-
tion levels to simulate the spread - a macroscopic level using various epidemio-
logic models from biology (the SIR model in particular) and a microscopic level
to simulate a worm’s interaction with network infrastructure. SSF.App.Worm
assumes that the worm spreads by randomly targeting other machines on the
network to infect. There are also many configurable parameters that can be
specified in the simulations such as the total number of susceptible machines,
the number of initially infected machines, and a removal function to specify
when infected machines can be recovered from infection[23].

This is a substantial improvement over the previous simulators in that
it models the spread of worms over the Internet. This gives good results when
simulating the speed a given worm spread. Since it simulates traffic over net-
work hardware such as routers and bridges, SSF.App.Worm could be extended
to simulate prevention measures installed on that hardware. The user of the
simulation could then see what effect those prevention measures would have on
real-world viruses like SQLSlammer and CodeRed.

15

As with DDoSVax, all prevention measures in SSF.App.Worm must be
implemented in the network hardware, making it impossible to simulate host-
based prevention measures. Also, due to the fact that they simulate the traffic
between each piece of network hardware as well as to the end user’s machines,
much of the simulator’s resources must be devoted to generating and tracking
the network traffic rather than the effects of the malicious application itself.

2.2.5 Shortcomings of the Previous Simulators

Although each of the simulators are important and useful, none of them are
perfect. Some of these shortcomings are addressed in this thesis, while other
shortcomings are left to be addressed in future work.

The Weaver Simulator has no ability to simulate prevention measures,
either network or host based. It also has no ability to define nodes other than
susceptible, infected, or not susceptible such as sensor nodes, tar pits, or even
unreachable machines[19].

For NWS, the epidemiological models used do not hold up when applied
to computer systems, as has been shown. There is also no way to simulate
prevention measures on each host. Since the framework and simulated worms
are all written in the scripting language Perl, Edigar points out that the perfor-
mance of the simulator will never be enough to simulate the entire Internet[20].

For DDoSVax, the project’s goal includes a statement that they will
research possible semi-automatic countermeasures to DDoS attacks[21], but all
countermeasures are implemented in the network hardware making it impossible
to simulate host-based prevention techniques. Also, since they are targeting
DDoS attacks, they focus much of their resources into analyzing the traffic
generated by the DDoS worms. This approach limits the use of this simulator
for more general purpose worms since the network traffic is not necessary to
simulate the spread of malicious applications over a network.

SSF.App.Worm also has some shortcomings in the way prevention mea-
sures can be simulated as well as modeling worm spread in general. First, as
has been noted the SIR epidemiological model that the simulator uses for high
level infection simulation does not hold up well for non-biological systems such
as computer networks. Secondly, since SSFNet simulates the actual traffic gen-
erated by the worm, fast spreading worms such as SQLSlammer and CodeRed
generate enough traffic to make the resources needed for the simulation more
than a modest machine can handle[23][24]. Modeling the network routes that a
worm takes to infect another machine is important in many cases, but generat-
ing the traffic between the network hardware is often unnecessary in simulation.
Finally, any prevention measures simulated would need to be simulated on net-
work hardware rather than on the host machines that are being infected. Having

16

the ability to model prevention measures on the host opens up a whole new set
of experiments such as lossy detection (see section 4.3) that would be difficult
or impractical to apply to network hardware.

17

Chapter 3

Hephaestus

While studying the previous simulators, especially due to the shortcomings
listed in section 2.2.5, it became clear that a new simulation framework was
needed to efficiently fulfill each of the following three requirements:

1. Needs to be able to model malicious code spread over a network

2. Needs to be able to model custom host based prevention techniques

3. Needs to be able to model custom network based prevention techniques

Several of the previous simulators had the ability to fulfill two of these re-
quirements, but none could fulfill all of them. Hephaestus is a new simulation
framework designed to fulfill all these requirements and be extensible to future
requirements.

3.1 Overview of Hephaestus

Hephaestus is a discrete time model, mixed-level abstraction, Monte Carlo sim-
ulation framework designed to simulate how mobile code can spread across a
large network. In theory, the network can be consisted of up to 232 machines. In
practice, however, the resources needed to model a network of this size are more
than a modern workstation can hope to provide. It models nodes in a network
and allows configuration of each node. Using this method, we can learn more
about how mobile code currently spreads, determine the limits of how quickly a
given infection can propogate through a network, how widespread the infection
can become, and most importantly what measures can be taken to prevent epi-
demic or pandemic outbreaks until reactive solutions can be put in place such
as anti-virus signature updates.

18

The Hephaestus framework is composed of several different components,
including the simulation engine component HephaestusEngine. The engine cy-
cles through the set of infected nodes and for each of the infected nodes the
engine randomly selects another node to try to infect. This node could be in-
fected already, it could be uninfectable, or it could be configured in one of many
other ways. After all the infected nodes have had a chance to infect another
node, the entire cycle begins again, potentially with newly infected nodes. Each
of these cycles is called a “time step” and the number of time steps that the
simulation goes through is configured in the simulator. After all the time steps
have been executed the simulation ends and the results are displayed or logged
to a file.

By studying the results of experiments run using Hephaestus we can
learn about, model, and apply measures designed to slow or stop the spread of a
given category of malicious code. Hephaestus also allows these countermeasures
to be easily modeled and have their effects studied. To allow this, the nodes
involved in the simulator are highly configurable. As part of this configuration
the user can specify whether or not a node can ever be infected, whether it can
be connected to, and many other options. By changing these parameters we
can simulate how a machine with prevention measures applied can help slow or
stop a network infection completely.

3.2 Components Making Up the Hephaestus

Framework

Hephaestus consists of several components that work together to make the sim-
ulator framework. Below is a brief description of each of them.

• HephaestusEngine - This is the driving force behind the entire simulator
and is the most important component. All other components connect and
interact with the engine to set up and get the results of the experiment
to report.

• Views - This is an API used as a window into the actions taken by the
engine. All events that happen in the engine get reported to registered
views for display to the user.

• Command Line Interface - A console-based front-end to the simulator.
Contains several logging options and is fully configurable.

• Win32 User Interface - A Windows front-end to the simulator. Contains all
the options that the Command Line Interface supports, and adds graphs
to help the user visualize the results of the experiment.

19

• ScPl - The plotting library used in the Win32 User Interface to display
the visual representations of the simulation results.

• Actor Libraries - Each of these Windows Dlls represents a different type of
actor node in the simulation. These are configurable, and can be plugged
into the simulator by specifying them in the configuration files passed to
the simulator.

A diagram showing where each of these pieces fit into the framework is
shown in figure 3.1.

20

Figure 3.1: Components of the Hephaestus Simulation Framework

3.2.1 HephaestusEngine

The HephaestusEngine component is the heart of the Hephaestus simulator
framework. It controls the nodes’ interactions during each timestep of the sim-
ulation and reports results to components that are interested. One detail to
keep in mind is that at each timestep, each infected node gets to try to connect
to another node. Which node gets targeted is determined by a pseudorandom
number generator (a Mersenne Twister implementation, see Appendix A), so

21

currently all infection is done at random. There is no way to simulate an “in-
telligent” node that targets nodes to infect in any way other than completely at
random in the current version of Hephaestus, but different targeting algorithms
can easily be added in future versions.

Below is sample C++ code to instantiate an instance of the engine. The
comments above each line will describe how to use the methods in that line.

// HephaestusEngine is the class to instantiate. The parameter to

// the constructor is the configuration file to use for the simulation

HephaestusEngine *engine = new HephaestusEngine("c:\\actorlist.txt");

if (!engine)

return -1;

HephaestusCLISimpleView *view = new HephaestusCLISimpleView();

if (!view)

{

delete engine;

return -1;

}

// registers a view for results notification. More on this later in the page.

engine->RegisterView(view);

// sets the number of nodes infected at the start of the simulation

engine->SetNumInfected(1);

// sets the maximum number of time steps the simulation will execute for

engine->SetTimeSteps(100);

// sets the seed for the Mersenne Twister random number generator

engine->SetRandSeed((unsigned long)time(NULL));

// sets the number of infected nodes that when reached will cause the

// simulation to stop executing. Set to 0 for no threshold.

engine->SetThreshold(10000);

// sets the number of time steps that if no new nodes are infected will cause

// the simulation to stop executing. Set to 0 for no stability threshold

engine->SetStabilityThreshold(10);

// starts the simulation. all results are sent to any registered views. More

// on this later in the page.

engine->RunSimulation();

delete view;

delete engine;

3.2.2 Views

In the source code listed in section 3.2.1, there was mention of a “view” used
to get the results of the engines actions. A view is an instance or subclass of 1
of 2 classes - one for pure Win32 code and one for managed (Microsoft .NET
Common Runtime Library compatible) code. Users can register more than 1
view for each HephaestusEngine instance and each will get notified of all results.
These two classes are “HephaestusView” and “ManagedView”.

22

HephaestusView

The HephaestusView class is part of the HephaestusEngine component. Sub-
classing this class and registering it with the engine will allow the user to get
notified of results of the simulator as they happen. This class is for pure Win32
code. For managed code users should use the ManagedView class. Note that
nearly every method in the HephaestusView class is pure virtual. This means
that when a user subclasses this class, they have to provide an implementation
method for each method in this class that is pure virtual, even if the imple-
mentation method does not do anything. The definition for this class is listed
below.

class SimulatorEngine::HephaestusView

{

private:

public:

HephaestusView();

virtual ~HephaestusView();

// called when the initial number of infected nodes are set. value is the number infected

virtual void NumInfectedSet (unsigned long value) = 0;

// called when the number of time steps is set. value is the number of time steps set

virtual void TimeStepsSet (unsigned long value) = 0;

// called when the random number seed is set. value is the seed value set

virtual void RandSeedSet (unsigned long value) = 0;

// called when the threshold value is set. value is the threshold value set

virtual void ThresholdSet (unsigned long value) = 0;

// called when the stability threshold value is set. value is the stability threshold

// value set

virtual void StabilityThresholdSet (unsigned long value) = 0;

// called when the simulation has started

virtual void SimulationStarted () = 0;

// called when the simulation is over

virtual void SimulationEnded () = 0;

// called at the beginning of each timestep during the simulation. timestep is the

// timestep value that was just started

virtual void TimestepStarted (unsigned long timestep) = 0;

// called at the end of each timestep during the simulation. timestep is the timestep

// value that has just ended. totalInfected is the total number of infected nodes so far.

// timestepInfected is the number of nodes that were infected in this timestep

virtual void TimestepEnded (unsigned long timestep, unsigned long totalInfected,

unsigned long timestepInfected) = 0;

// called when it is a particular node’s turn to connect/infect another node. node is the

// node that has this focus

virtual void NodeHasFocusPhaseStarted (NetworkNode *node) = 0;

// called when a particular node’s turn to connect/infect another node has ended. node is

// the node that has lost this focus.

virtual void NodeHasFocusPhaseEnded (NetworkNode *node) = 0;

// called when the phase of each timestep has started where already opened sockets attempt

// to connect to the nodes on the other end of the socket

virtual void ReconnectOpenSocketsPhaseStarted () = 0;

// called when the phase of each timestep has ended where already opened sockets attempt

// to connect to the nodes on the other end of the socket

virtual void ReconnectOpenSocketsPhaseEnded () = 0;

23

// called before the simulation starts when the engine is trying to create all the nodes

// for the simulation

virtual void NodeCreationPhaseStarted () = 0;

// called before the simulation starts a new node is created. node is the node created

virtual void NodeCreated (NetworkNode *node) = 0;

// called before the simulation starts when the engine is done trying to create all the

// nodes for the simulation

virtual void NodeCreationPhaseEnded () = 0;

// called before the simulation starts when the engine has started trying to infect the

// initially infected nodes

virtual void InitialInfectionPhaseStarted () = 0;

// called before the simulation starts when the engine has infected a node. node is the

// node that was infected

virtual void InitialInfection (NetworkNode *node) = 0;

// called before the simulation starts when the engine has finished trying to infect the

// initially infected nodes

virtual void InitialInfectionPhaseEnded () = 0;

// called during the simulation in each timestep when the phase to infect nodes has

// started

virtual void InfectionPhaseStarted () = 0;

// called during the simulation in each timestep when an infection has been attempted.

// sendingNode is the node doing the infection attempt. receivingNode is the node to be

// infected. socket is the open socket between the 2 nodes. result is the result of the

// infection attempt.

virtual void InfectionAttempt (NetworkNode *sendingNode, NetworkNode *receivingNode,

NetworkSocket *socket, InfectionResult result) = 0;

// called during the simulation in each timestep when the phase to infect nodes has ended

virtual void InfectionPhaseEnded () = 0;

// called during the simulation in each timestep when the phase to connect to a node has

// started. sendingNode is the node doing the connecting. receivingNode is the node being

// connected to.

virtual void NewConnectionPhaseStarted (NetworkNode *sendingNode,

NetworkNode *receivingNode) = 0;

// called during the simulation in each timestep when the phase to connect to a node has

// ended. sendingNode is the node doing the connecting. receivingNode is the node being

// connected to.

virtual void NewConnectionPhaseEnded (NetworkNode *sendingNode,

NetworkNode *receivingNode) = 0;

// called when a node has been successfully infected. node is the newly infected node

virtual void NodeWasInfected (NetworkNode *node) = 0;

// called when the infected threshold has been exceeded

virtual void ThresholdExceeded () = 0;

// called when the stability threshold has been exceeded

virtual void StabilityThresholdExceeded () = 0;

// called during the simulation in each timestep when a connection has been attempted.

// node1 is the node attempting the connection. node2 is the node being connected to.

// socket is the socket between the 2 nodes. socketTimeOpen is the length of time (in

// timesteps) that the socket has been open. connectionResult is the result of the

// attempt.

virtual void ConnectionAttempt (NetworkNode *node1, NetworkNode *node2,

NetworkSocket *socket, unsigned short socketTimeOpen,

ConnectionResult connectionResult) = 0;

// called when a new socket has been created between 2 nodes. socket is the socket

// created

virtual void SocketAdded (NetworkSocket *socket) = 0;

// called when a socket has been deleted between 2 nodes. socket is the socket deleted.

virtual void SocketDeleted (NetworkSocket *socket) = 0;

24

};

ManagedView

This class is part of the Win32 User Interface and is HephaestusView’s counter-
part for managed code. Unlike HephaestusView users do not need to subclass
this class, they can simply use it. Users also do not need to provide an im-
plementation method for each of these delegates, only the ones they want to
register for. To see what each of these delegates does, see the documentation for
the corresponding HephaestusView method listed in section 3.2.2. Also notice
that the ManagedView class is a singleton and has a private constructor. This
means it can not be instantiated directly. To get a pointer to the instance of
the class, use code like the following:

ManagedView *view = ManagedView::GetInstance();

The definition for the ManagedView class follows.

public __delegate void NumInfectedSetDelegate (unsigned long);

public __delegate void TimeStepsSetDelegate (unsigned long);

public __delegate void RandSeedSetDelegate (unsigned long);

public __delegate void ThresholdSetDelegate (unsigned long);

public __delegate void StabilityThresholdSetDelegate (unsigned long);

public __delegate void SimulationStartedDelegate ();

public __delegate void SimulationEndedDelegate ();

public __delegate void TimestepStartedDelegate (unsigned long);

public __delegate void TimestepEndedDelegate (unsigned long, unsigned long, unsigned long);

public __delegate void NodeHasFocusPhaseStartedDelegate (NetworkNode *);

public __delegate void NodeHasFocusPhaseEndedDelegate (NetworkNode *);

public __delegate void ReconnectOpenSocketsPhaseStartedDelegate ();

public __delegate void ReconnectOpenSocketsPhaseEndedDelegate ();

public __delegate void NodeCreationPhaseStartedDelegate ();

public __delegate void NodeCreatedDelegate (NetworkNode *);

public __delegate void NodeCreationPhaseEndedDelegate ();

public __delegate void InitialInfectionPhaseStartedDelegate ();

public __delegate void InitialInfectionDelegate (NetworkNode *);

public __delegate void InitialInfectionPhaseEndedDelegate ();

public __delegate void InfectionPhaseStartedDelegate ();

public __delegate void InfectionAttemptDelegate (NetworkNode *, NetworkNode *,

NetworkSocket *, InfectionResult);

public __delegate void InfectionPhaseEndedDelegate ();

public __delegate void NewConnectionPhaseStartedDelegate (NetworkNode *, NetworkNode *);

public __delegate void NewConnectionPhaseEndedDelegate (NetworkNode *, NetworkNode *);

public __delegate void NodeWasInfectedDelegate (NetworkNode *);

public __delegate void ThresholdExceededDelegate ();

public __delegate void StabilityThresholdExceededDelegate ();

public __delegate void ConnectionAttemptDelegate (NetworkNode *, NetworkNode *,

NetworkSocket *, unsigned short, ConnectionResult);

public __delegate void SocketAddedDelegate (NetworkSocket *);

public __delegate void SocketDeletedDelegate (NetworkSocket *);

public __gc class HephaestusGui::ManagedView

{

private:

ManagedView ();

~ManagedView ();

25

static ManagedView *instance = NULL;

ManagedViewBase *base;

public:

static ManagedView *GetInstance ();

// gets the HephaestusView object that this class is based on.

__property HephaestusView *get_UnmanagedView () { return base; }

NumInfectedSetDelegate *onNumInfectedSet ;

TimeStepsSetDelegate *onTimeStepsSet ;

RandSeedSetDelegate *onRandSeedSet ;

ThresholdSetDelegate *onThresholdSet ;

StabilityThresholdSetDelegate *onStabilityThresholdSet ;

SimulationStartedDelegate *onSimulationStarted ;

SimulationEndedDelegate *onSimulationEnded ;

TimestepStartedDelegate *onTimestepStarted ;

TimestepEndedDelegate *onTimestepEnded ;

NodeHasFocusPhaseStartedDelegate *onNodeHasFocusPhaseStarted ;

NodeHasFocusPhaseEndedDelegate *onNodeHasFocusPhaseEnded ;

ReconnectOpenSocketsPhaseStartedDelegate *onReconnectOpenSocketsPhaseStarted ;

ReconnectOpenSocketsPhaseEndedDelegate *onReconnectOpenSocketsPhaseEnded ;

NodeCreationPhaseStartedDelegate *onNodeCreationPhaseStarted ;

NodeCreatedDelegate *onNodeCreated ;

NodeCreationPhaseEndedDelegate *onNodeCreationPhaseEnded ;

InitialInfectionPhaseStartedDelegate *onInitialInfectionPhaseStarted ;

InitialInfectionDelegate *onInitialInfection ;

InitialInfectionPhaseEndedDelegate *onInitialInfectionPhaseEnded ;

InfectionPhaseStartedDelegate *onInfectionPhaseStarted ;

InfectionAttemptDelegate *onInfectionAttempt ;

InfectionPhaseEndedDelegate *onInfectionPhaseEnded ;

NewConnectionPhaseStartedDelegate *onNewConnectionPhaseStarted ;

NewConnectionPhaseEndedDelegate *onNewConnectionPhaseEnded ;

NodeWasInfectedDelegate *onNodeWasInfected ;

ThresholdExceededDelegate *onThresholdExceeded ;

StabilityThresholdExceededDelegate *onStabilityThresholdExceeded ;

ConnectionAttemptDelegate *onConnectionAttempt ;

SocketAddedDelegate *onSocketAdded ;

SocketDeletedDelegate *onSocketDeleted ;

};

3.2.3 Command Line Interface

The Command Line Interface(CLI) is a console-based front-end to Hephaestus.
This component has the same functionality as the Win32 User Interface with
the exception of the graphing reports. Users can also specify several options to
configure the simulation’s execution. The CLI takes several parameters which
allow the user to configure exactly how they want the simulation to be executed.
They are listed below, with the required parameters specified in bold text.

• /infected - The number of nodes infected before the start of the simula-
tion. Typically this should be set to 1.

• /configfile - The full path to the configuration file to use to set up the
simulation.

26

• /time - The number of timesteps to run the simulation for. This will po-
tentially be cut short as the options specified for /threshold and /stability
take precedence over this option. In other words, this is the maximum
number of timesteps the simulation will execute through.

• /threshold - The simulation will stop immediately when the total number
of infected nodes reaches this value. This will limit the length of time the
experiment will run after all the required nodes are infected.

• /stability - The simulation will stop after this number of timesteps has
passed with no new infections. This will limit the length of time the ex-
periment will run after all the nodes that will ever be infected are infected.

• /outputtype - The type of output to produce. If this option is not spec-
ified, no output will be given. Possible values are “xml”, “verbose”, and
“simple”.

– The xml output generates valid XML output describing the execution
steps of the simulation

– The verbose output generates plain English descriptions of events
that took place during the simulation.

– The simple output generates 1 line for each timestep, with comma-
separated fields. The first is the timestep number, starting with 1.
The second field is the total number of infected nodes so far. The
third field is the number of nodes infected during that timestep.

• /output - The file to write the output to in the specified output type. If
this option is not specified, the output will be presented on the screen
only.

3.2.4 Win32 User Interface

The Win32 User Interface of Hephaestus is designed to make the execution
and viewing of experiment results as simple and user friendly as possible while
still allowing for the flexibility and extensibility provided by the Hephaestus
Command Line Interface. On launching the Win32 User Interface users will see
a screen like the one in figure 3.2.

27

Figure 3.2: Initial Screen When the Win32 User Interface is Launched

Users should click on the “Browse...” button to locate a configuration
file. Once they have selected a valid configuration file, the details of the file
will be filled in to the “Details” list view and all the options will be enabled.
It should look like the screen in figure 3.3, except the details area will likely
contain different information.

28

Figure 3.3: The Win32 User Interface After a Configuration File Has Been
Selected

At this point users can specify all the options they want to for this
simulation execution. By double-clicking on one of the values in the details list,
an edit box will appear and users can change the values that were read from
the configuration file. In the “General Options” 4 options can be specified:

• Infected - The number of nodes infected before the start of the simulation.
Typically this should be set to 1 unless a hit list of more than a single
machine is being used.

• Time Steps - The number of timesteps to run the simulation for. This will
potentially be cut short as the options specified for the Infected Threshold
and Stability Threshold take precedence over this option. In other words,
this is the maximum number of timesteps for the simulation to execute
through.

• Infected Threshold - The simulation will stop immediately when the total
number of infected nodes reaches this value. This will limit the length of
time the experiment will run after all the required nodes are infected. This
also helps limit the X-axis of the graph reports to a meaningful range.

• Stability Threshold - The simulation will stop after this number of timesteps
has passed with no new infections. This will limit the length of time the

29

experiment will run after all the nodes that will ever be infected are in-
fected. This also helps limit the x-axis of the graph reports to a meaningful
range.

Also, in the “Logging Options” section users can specify a format for
logging. These are the same options and the same format as the output types
in the CLI. They are listed below.

• The None option generates no log output, the graphs will still be gener-
ated.

• The XML option generates valid XML output describing the execution
steps of the simulation

• The Verbose option generates plain English descriptions of what took place
during the simulation.

• The Simple option generates 1 line for each timestep, with comma-separated
fields. The first is the timestep number, starting with 1. The second field
is the total number of infected nodes so far. The third field is the number
of nodes infected during that timestep.

After all necessary options have been specified all, users should click on
the “Start Simulation” button. As the text implies, this will start the simula-
tion. They will see a progress dialog showing the progress of the simulation. A
sample screen is shown in figure 3.4.

Figure 3.4: The Win32 User Interface Progress Window While Running a Sim-
ulation

The first progress bar is the percentage of the total time steps specified
that have been executed. The second progress bar is the percentage of infected
nodes versus the infected threshold specified in the options dialog. If the user

30

did not specify an infected threshold this will always be at zero percent. When
the simulation is complete, the results window will be displayed, which is shown
in figure 3.5.

Figure 3.5: The Win32 User Interface Results Window

On the top of the Results Window, there are two tabs titled “Infected
Nodes Per Timestep” and “Infections Over Time”. The “Infected Nodes Per
Timestep” graphs shows the number of nodes infected at each timestep. The
“Infections Over Time” graph shows the total number of infections accumulated
at each timestep. On the bottom of the screen there are also two tabs - “Node
Details” and “Log Details”. The “Node Details” tab will show the same options
that were specified in the Details list view in the Options dialog. The “Log
Details” tab will show a log of the simulation’s results in the specified log format
specified in the Options dialog.

There are also several menu items to be aware of:

• File menu

– Clear Log Window - Clears the contents of the “Log Details” tab in
the Results window

– Save Log Window Contents - Saves the contents of the “Log Details”
window to a file

31

– Save Current Chart - Saves the currently selected graph to a Win-
dows BMP file

– Exit - Exits Hephaestus

• Simulation menu

– Start ... - Opens the Options dialog so the user can change the options
and start a new simulation run.

3.2.5 ScPl

ScPl is a plotting library for Microsoft’s .NET platform. It is used in the Win32
User Interface to generate the graphs seen after a simulation execution. It is
free provided that their license agreement and copyright notices are included in
the distribution. This has been done for Hephaestus, and it is included here
again. It works very well and is extremely simple to use in code.

ScPl - A plotting library for .NET

Copyright (C) 2003, the ScPl team.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the following text in

the documentation and / or other materials provided with the

distribution:

"This product includes software developed as part of

the ScPl plotting library project available from:

http://www.netcontrols.org/scpl/ "

--

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3.2.6 Actor Libraries

Actor libraries are Windows DLLs that plug in to the simulator engine to rep-
resent different types of nodes in the simulator. Five different actor libraries

32

have been provided to use “out of the box”, but users can easily create their
own for further extensibility, as is described in section 3.3.2. The provided actor
libraries, and how they differ from each other are described below:

• IncreasingConnectionTimeoutNodeLibrary .dll - Contains the “Increasing
Connection Timeout Node” node type. Every time that an infected node
attempts to connect to this node, the infecting node will have to wait
longer before the connection is accepted. This value is specified as a
parameter to the node type in the configuration file. So if this value is set
to 5, the first connection attempt will not be answered for 5 timesteps.
The next one will not be answered for 10 timesteps, the third for 15, etc.
This node will never be infected. Since it can never be infected it will
never try to infect other nodes.

• InfectableNodeLibrary .dll - Contains the “Infectable” node type. This
node will always accept all connection attempts and infection attempts
by any infected node. Once infected it will always attempt to connect and
infect another node.

• LimitedConnectionsNodeLibrary .dll - Contains the “Limited Connections
Node” node type. This node will always accept connection attempts, will
always accept infection attempts, but will only try to connect and infect
other nodes for a variable number of times. This value is specified as a
parameter to the node type in the configuration file. So if the value is
specified to be 10, this node will only try to connect to and infect 10 other
nodes ever in its lifetime.

• SensorNodeLibrary .dll - Contains the “Sensor” node type. This node will
never accept connection attempts and will never accept infection attempts.
Since it can never be infected it will never try to infect other nodes.

• UninfectableNodeLibrary .dll - Contains the “UnInfectable” node type.
This node will always accept connection attempts from other nodes but
will always deny infection attempts. Since it can never be infected it will
never try to infect other nodes.

3.3 How Hephaestus Can Be Enhanced and Ex-

tended

There are 2 major ways to extend and enhance the simulator. Adding new
actor libraries allows the user to see how a distribution of a particular type of
infective or preventative measure affects the spread of malicious mobile code.

33

Using configuration files allows the user to configure the parameters of each
actor library to be used in a simulation.

3.3.1 Configuration Files

Configuration files in Hephaestus are the main input to the simulator. It con-
tains the information about the nodes that will be simulated in a given execution
of Hephaestus. This information includes the following:

• The path to the actor library containing the actor definition

• The number of nodes created from that actor library

• The number of sockets each node has

• The number of timesteps that a connection attempt to a node of that type
will timeout in

• The number of connection attempts a node of that type will try before
moving on to another machine

• Any additional parameters specific to that node type. This will vary
between actor libraries.

A configuration file contains at least 1 node set definition, and optionally
comment lines as well. Each node set definition is specified on its own line, and
each line’s fields are comma delimited. Here is a sample configuration file:

; This is a comment line

..\actors\InfectableNodeLibrary.dll,10000,1,30,50

..\actors\SensorNodeLibrary.dll,5000,500,30,50

This file specifies that there will be two types of actors involved in this
execution of Hephaestus. The first is the node type from InfectableNodeLi-
brary.dll. There will be 10,000 nodes of that type. Each one will have 1 socket,
will allow 30 seconds before connection attempts are timed out, and will have
50 connection retries before giving up. The second is the node type from Sen-
sorNodeLibrary.dll. There will be 5,000 nodes of that type. Each one will have
500 sockets, will allow 30 seconds before timing out a connection attempt, and
will have 50 connection retries before giving up. Neither of these lines contains
parameters because neither node type allows any parameters.

34

3.3.2 Adding Actor Libraries

Each actor library used by the simulator needs to inherit from and implement
abstract methods of 2 classes. Each actor library is a Windows DLL and once
compiled, can be used by the simulator with no extra effort. In effect, they are
plugins to the simulator. The classes and methods that need to be implemented
are documented below. Also listed are two enumerations that are useful to know
what possible return values are for some methods in those classes. All use the
namespace “SimulatorEngine”. The complete source code for a sample actor
library can be found in Appendix B. The enumerations are below:

//***

// possible connection attempt results

//***

enum ConnectionResult

{

Success = 0, // the connection was successful

Denied, // the connection attempt was denied

NoAnswer // the node did not respond to the connection attempt

};

//***

// possible infection attempt results

//***

enum InfectionResult

{

NoPreviousAttempt = 0, // this node has never had an infection attempt against

// it

Infected, // the node was infected

NotInfected, // the infection attempt was denied

NoInfectionAnswer // the node did not respond to the infection attempt

};

Here is the one method that needs to be implemented in the subclass of
class NodeLibrary :

//***

// Method: CreateNode

// Description: Creates a new NetworkNode object and returns it

//

// Parameters:

// params - a list of parameter strings to pass to the node

// numSockets - the number of sockets for the new node

// timeOut - the connection timeout for the new node

// numConnections - the number of connection attempts for the new node

//

// Return Value: a new network node object

//***

NetworkNode *CreateNode(vector<string>*params, unsigned short numSockets,

unsigned short timeOut, unsigned char numConnections);

Below are the methods to implement in the class subclassed from class
NetworkNode:

//***

// Method: NetworkNode

35

// Description: Constructor for the NetworkNode class

//

// Parameters:

// params - a list of parameter strings. Can be anything. These

// are passed in directly from the configuration files

//

// Return Value: None

//***

NetworkNode(vector<string> *params);

//***

// Method: WillAttemptToConnectToNode

// Description: returns whether or not this node will attempt to connect

// to the specified node

//

// Parameters:

// nodeToConnectTo - the node to determine whether or not to connect to

//

// Return Value: true if it should attempt a connection, false otherwise

//***

bool WillAttemptToConnectToNode(NetworkNode *nodeToConnectTo);

//***

// Method: ConnectToNode

// Description: tries to connect to this node from another node

//

// Parameters:

// connectingNode - the node trying to connect

// nodeToConnect - the node being connected to

// timeSocketHasBeenOpen - the number of timesteps the socket has been open

// between the 2

//

// Return Value: a connection result enumeration value

//***

ConnectionResult ConnectToNode(NetworkNode *connectingNode, NetworkNode *nodeToConnect,

unsigned short timeSocketHasBeenOpen);

//***

// Method: AttemptToBeInfected

// Description: called when the infectingNode is trying to infect this node

//

// Parameters:

// infectingNode - the node trying to infect this one

//

// Return Value: a infection result enumeration

//***

InfectionResult AttemptToBeInfected(NetworkNode *infectingNode);

3.4 A Simple Walk-Through Tutorial of a Hep-

haestus Experiment

In order to help users understand how to use Hephaestus and to better under-
stand its results, this section will walk the reader through a simple experiment.
It will let the user take a look to see what happens to the spread of an infection
if software is installed that allows infections to occur freely, but then limits the
number of times that node can try to infect other nodes on all nodes in the
network. The user will observe results when the number of infection attempts

36

is unlimited, and also when it is limited to 10, 5, 3, and 2 attempts per infected
node. We will also assume that 40% of the nodes on our network are unin-
fectable due to correct service packs being applied, wrong operating system,
etc.

First we will run the simulation with no limitation on the infection at-
tempts. The first thing to do in order to run this experiment is to create a
configuration file set up the way we want it. For the simulation with no limita-
tions on the infection attempts we will need two node types, both of which are
provided with the Hephaestus distribution. They are in the actor libraries “In-
fectableNodeLibrary.dll” and “UnInfectableNodeLibrary.dll” and can be found
in the “actors” folder of the distribution. Here is the text of the configuration
file to use when the configuration file is put in the root folder of the distribution:

.\actors\InfectableNodeLibrary.dll,60000,1,30,50

.\actors\UnInfectableNodeLibrary.dll,40000,1,30,50

Figures 3.6 and 3.7 are sample screenshots of this simulation when run
through the Hephaestus Win32 User Interface. All 60,000 potentially infected
nodes were infected rather quickly.

Figure 3.6: Nodes infected at each timestep with no connection limitation

37

Figure 3.7: Nodes infected over time with no connection limitation

Now the user should create a new actor library to meet our needs. For
simplicitly, this walk-through uses the LimitedConnectionsNode actor. The
complete source code for this actor type can be found in Appendix B. Once the
user has created and compiled this library, the simulator engine will take care
of all the interactions with the actor, we just need a configuration file to run the
tests limiting the connection attempts to 10, 5, 3, and 2. The new configuration
file is listed below:

.\actors\LimitedConnectionsNodeLibrary.dll,60000,1,30,50,10

.\actors\UnInfectableNodeLibrary.dll,40000,1,30,50

Notice the new library name on the first line of the configuration file as
well as the new value of “10” added to the end of the line. That makes the
string “10” (which will be converted to an integer in the constructor) the first
parameter passed to the constructor of the library. The results of running this
configuration file using Hephaestus are shown in figures 3.8 and 3.9. Less than
56,000 nodes were infected so limiting connections is resulting in a slowdown in
the spread of the infection.

38

Figure 3.8: Nodes infected at each timestep with a connection limit of 10

Figure 3.9: Nodes infected over time with a connection limit of 10

To run the experiment with connections limited to 5, all that is needed
is to change the parameter passed on the first line of the configuration file. So
instead of “10” at the end of the first line, we change the value to “5” and run
Hephaestus on this configuration file again. The results are shown in figures
3.10 and 3.11, and this time just over 50,000 nodes were infected.

39

Figure 3.10: Nodes infected at each timestep with a connection limit of 5

Figure 3.11: Nodes infected over time with a connection limit of 5

Results for a connection limit of 3 are shown in figures 3.12 and 3.13,
while results for a connection limit of 2 are shown in 3.14 and 3.15. Just under
20,000 nodes were infected for a limit of 3, while just 5 out of the 60,000 nodes
were infected with a connection limit of 2.

40

Figure 3.12: Nodes infected at each timestep with a connection limit of 3

Figure 3.13: Nodes infected over time with a connection limit of 3

41

Figure 3.14: Nodes infected at each timestep with a connection limit of 2

Figure 3.15: Nodes infected over time with a connection limit of 2

The observations that can be taken away from this experiment are that if
the user had some software installed on potentially infected machines, and con-
figured the software to only allow outgoing infections a limited number of times,
the software can actually slow or even stop the spread of that malicious code
even without signature-based anti-virus software installed. Of course, without
the anti-virus software many machines will be damaged, but the point is the
spread can be stopped even without it.

42

Chapter 4

Experiments Using Hephaestus

The flexibility and extensibility of Hephaestus allows a wide range of exper-
iments to be run to determine the effectiveness of various simulated spread
prevention techniques. By studying the results of those experiments, hopefully
more effective real-world virus prevention techniques can be developed and ap-
plied to real computers and networks. This chapter presents the implementa-
tions and results of four such experiments: one with no prevention measures,
Monoculture, Lossy Detection, and Tarpits.

4.1 No Prevention Measures

The first experiment that was run to make sure the simulator was working as
expected was to simulate a virus that spreads without prevention measures. To
run this experiment we only needed 2 actor types - Infectable and Uninfectable.
Five experiments were then run under Hephaestus with different ratios of in-
fectable to uninfectable nodes, each with a total of 100,000 nodes.

The first experiment was with 100,000 infectable nodes and zero unin-
fectable nodes. In essence this simulation is approximately the expected result
if you ran the Weaver simulator[19] with 100,000 nodes with each timestep be-
ing 1 second in Weaver’s simulator and a hitlist size of 0. As simple, although
certainly not complete, verification we can compare the curve produced by Hep-
haestus to the random curve shown by Weaver[19] to ensure that they agree.
The results from Hephaestus are shown in figures 4.1 and 4.2. The results from
Weaver’s experiments are shown in figure 4.3. The configuration file used for the
simulation is listed below. The configuration files used for the other simulations
in this section are identical other than the number of nodes of each actor type.

..\actors\InfectableNodeLibrary.dll,100000,1,30,50

..\actors\UninfectableNodeLibrary.dll,0,1,30,50

The next simulation run was one with three quarters of the population

43

infectable. We expected the curve to have the same shape as with 100 percent
infectable, but take more timesteps to complete. As shown in figures 4.4 and
4.5, this is in fact what the simulation showed.

Next a 50:50 ratio of infectable to uninfectable nodes was simulated.
Again, we expected the curve to have the same shape as with 100 and 75
percent infectable, but take more timesteps to complete. Again, that was the
case (Figures 4.6 and 4.7)

Another simulation was run with one quarter of the nodes being in-
fectable. Results were again consistent with the expected results (Figures 4.8
and 4.9)

Finally, a simulation with just one percent of the nodes being infectable
was run. The results are shown in figures 4.10 and 4.11. This also agreed
with our expectations of the curve, but there was an added verification in these
results. Notice the “jaggedness” of the graphs in figures 4.9 and 4.11. The
reason this jaggedness occurred is due to the fact that at these ratios there was
a high chance that many of the infected nodes would try to infect nodes that
were already infected or uninfectable. The number of uninfectable or already
infected nodes hit each timestep varied greatly and so it should not have been
expected that the curve would be generally as smooth as those with a high ratio
of infectable nodes.

Figure 4.1: Infectable nodes infected at each timestep using Hephaestus where
all 100,000 nodes are infectable

44

Figure 4.2: Infectable nodes infected over time using Hephaestus where all
100,000 nodes are infectable

Figure 4.3: Results of the Weaver simulator

45

Figure 4.4: Infectable nodes infected at each timestep using Hephaestus with a
75,000 to 25,000 infectable vs uninfectable ratio

Figure 4.5: Infectable nodes infected over time using Hephaestus with a 75,000
to 25,000 infectable vs uninfectable ratio

46

Figure 4.6: Infectable nodes infected at each timestep using Hephaestus with a
50,000 to 50,000 infectable vs uninfectable ratio

Figure 4.7: Infectable nodes infected over time using Hephaestus with a 50,000
to 50,000 infectable vs uninfectable ratio

47

Figure 4.8: Infectable nodes infected at each timestep using Hephaestus with a
25,000 to 75,000 infectable vs uninfectable ratio

Figure 4.9: Infectable nodes infected over time using Hephaestus with a 25,000
to 75,000 infectable vs uninfectable ratio

48

Figure 4.10: Infectable nodes infected at each timestep using Hephaestus with
a 1,000 to 99,000 infectable vs uninfectable ratio

Figure 4.11: Infectable nodes infected over time using Hephaestus with a 1,000
to 99,000 infectable vs uninfectable ratio

4.2 Monoculture

In 2003, a paper published by several highly-respected cybersecurity experts
stated that a monoculture in computer networks is not only undesirable, but
also critically dangerous[25]. They also state that a monoculture currently exists
due to most of the computers in the world running Microsoft software. Since
that time, other respected experts have determined that the diversity needed to

49

effectively slow down the spread of malicious mobile code including viruses to
a level where humans can respond to the threat is nearly impossible to achieve
in real-world networks[26]. Hephaestus can be used to approximate what level
of diversity is needed to allow diversity alone to be a deterrent of virus spread.
This section attempts to do just that.

There are two separate ways to set up this experiment. In one way,
a constant number of total nodes can be used while the number of infectable
and uninfectable nodes vary with each diversity change. For instance, the ex-
periment could use a constant total node count of 100,000 nodes, and for 2.5
percent diversity there would be 97,500 infectable nodes and 2,500 uninfectable
nodes. At 5 percent diversity, the ratio would be 95,000 to 5,000 respectively.
In the other way, the number of infectable nodes would remain constant while
the uninfectable count would change to make the diversity percentage correct.
So if 95 percent is being modeled and 100,000 infectable nodes are chosen, there
would be 1.9 million uninfectable nodes in the experiment. The first method
was chosen because it is much easier to interpret the results since the total
number of nodes is always constant.

For this experiment, we ran the Hephaestus CLI through a set of 40
configuration files 20 times each with 500 timesteps for a total of 800 output
files, each in the “Simple” output format. Each configuration file had the basic
format shown below:

.\actors\InfectableNodeLibrary.dll,NI,1,30,50

.\actors\UnInfectableNodeLibrary.dll,NU,30,50,10

In each configuration file there were 100,000 total nodes, and there were
40 configuration files since we varied the diversity between each configuration
file from 2.5% to 100% in 2.5% increments. Each of these percentages will be
identified by the variable P in the equations below. NI was the number of in-
fectable nodes in the configuration file, and NU was the number of uninfectable
nodes. Therefore NU is defined by the equation:

NU = 100000 ∗ (P/100) (4.1)

and NI is defined by:
NI = 100000−NU (4.2)

The purpose of running each of the 40 configuration files through Hep-
haestus 20 times was to help average out the data due to the randomness of the
scanning involved when an infected node attempts to infect a new node. After
obtaining the 800 results files, they were all merged into a single three column
tab delimited text file and run through Matlab 7 to produce the plot file. The
resulting plot file for this experiment is shown in figure 4.12, but to avoid confu-
sion it should be noted that the total number infected is 20 times that of a single

50

run, as those numbers were summed, not averaged, between the runs. This had
no effect on the meaning of the results, rather it only affected the scale of the
results, as the shape of the graph would be identical had those numbers been
averaged. This graph very closely agrees with Dr. Richard Ford’s monoculture
experiment created using a very early Linux-based proof of concept version of
Hephaestus shown in figure 4.13[26].

Figure 4.12: Monoculture plot for a constant 100,000 nodes under Hephaestus

51

Figure 4.13: Monoculture plot from Dr. Richard Ford’s Monoculture article

A plot to better show the slope in the graph resulting from the experi-
ment is shown in figure 4.14. Even near 75% diversity, meaning only one out
of every four nodes on the network is infectable, almost all infectable nodes
were infected in under 100 timesteps. This is well under the amount of time
that virus signatures can be created and distributed for quick spreading viruses
and worms. An interesting result of this experiment is that the authors of [25]
were correct in that having a diverse node population does in fact reduce the
damage caused and the number of machines infected by a particular malicious
application when compared to a monoculture. However, Dr Ford was also cor-
rect in [26] in that if the goal of avoiding monoculture is to prevent wide spread
infection, it does not matter if there is a monoculture or not. By avoiding
a monoculture, fewer machines will be affected by an outbreak because fewer
machines will be vulnerable, but every vulnerable machine will still be quickly
infected regardless of the diversity.

52

Figure 4.14: Face-on monoculture plot for a constant 100,000 nodes under Hep-
haestus

4.3 Lossy Detection

A simple potential method of slowing the spread of a self-replicating virus or
worm takes advantage of the fact that other than the target IP address to be
infected, a virus will send out the same set of packets over the network to infect
multiple targets. If software on the infected computer looks for this identical
outgoing traffic (other than the destination IP address of course), it can let a
few sets of the infection attempts pass through and then at a certain threshold
number can block that traffic until the user explicitly allows it to go through. In
effect, this would act as an outgoing traffic firewall that allows a few connections
to get through before dynamically preventing the traffic from future outgoing
infection attempts. This technique will be called lossy detection throughout the
remainder of this thesis.

There are two questions in this potential approach. First, will this
method work at all? If some traffic gets out, will the lossy detection really
slow the rate of spread to bring the virus spread below epidemic levels? The
other question is if it can slow the rate of spread, what threshold levels will
sufficiently slow down the spread rate of the infection? Both of these questions

53

can be easily answered using Hephaestus.

4.3.1 No Suppression

First, we will show the spread of an infection when there is no suppression
of outgoing infection attempts. This will make it easier to understand the
difference in spread that adding limits to the outgoing attempts has. Figure 4.15
contains the graph of a typical infection with no suppression. The configurations
files used to run the experiments look like the one below:

.\actors\InfectableNodeLibrary.dll,NI,1,30,50

.\actors\UnInfectableNodeLibrary.dll,NU,30,50,10

where NI was always a constant 100,000 nodes and NU , the number of unin-
fectable nodes, is defined by the equation

NU = (100000/(P/100))− 100000 (4.3)

There were 40 configuration files since we varied the diversity P between each
configuration file from 2.5% to 100% in 2.5% increments.

As expected, 100 percent of the nodes were infected quickly even at low
infectable percentages. Next we will show the effects of suppressing the outgoing
infection attempts.

54

Figure 4.15: Graph of virus spread with no outgoing infection attempt suppres-
sion

4.3.2 Ten Outgoing Infections Per Node

The experiment for limiting outgoing connection attempts to 10 was run ex-
actly like the one with no suppression, but the configuration files were slightly
different. They changed to look like the one below:

.\actors\LimitedConnectionsNodeLibrary.dll,NI,1,30,50,10

.\actors\UnInfectableNodeLibrary.dll,NU,1,50,10

where NI was always a constant 100,000 nodes and NU , the number of unin-
fectable nodes, is defined by the equation

NU = (100000/(P/100))− 100000 (4.4)

Running this experiment generated the graph shown in figure 4.16. Clearly
this shows that fewer infections occurred early in the experiment than with no
suppression (figure 4.15), but it is hard to quantify the difference by visually

55

comparing the graphs. So we generated a graph that was the difference in the
number infected between the two graphs and that graph is shown in figure 4.17.
Based on this graph we can determine that adding the ability to limit outgoing
infection attempts to ten dramatically reduces the total number of infected ma-
chines throughout the virus’ lifespan if the percentage on infectable machines is
low. However, if the percentage is greater than about 30 percent, nearly all the
infectable nodes will still eventually become infected. Upon seeing this result,
we were curious to discover whether reducing the number of outgoing infec-
tion attempts even further would significantly reduce the number of infected
machines at higher infectable percentage rates.

Figure 4.16: Graph of virus spread while only allowing 10 outgoing infection
attempts per infected node

56

Figure 4.17: The difference in the total number of infected nodes between no
suppression and limiting the outgoing infection attempts per infected node to
10

4.3.3 Five Outgoing Infections Per Node

Since limiting outgoing infection attempts to ten per infected node showed
promise, we next tried limiting it to five attempts per infected node. The result-
ing graph is shown in figure 4.18. The difference between having no suppression
and this graph are shown in figure 4.19. Just as we had hoped, changing the
limit from ten to five infection attempts did reduce the number of infected ma-
chines at higher infectable percentage rates. In fact, in this scenario more than
50% of machines would need to be infectable for the virus to gain any ground
at all in 500 or fewer timesteps.

57

Figure 4.18: Graph of virus spread while only allowing 5 outgoing infection
attempts per infected node

58

Figure 4.19: The difference in the total number of infected nodes between no
suppression and limiting the outgoing infection attempts per infected node to 5

4.3.4 Three Outgoing Infections Per Node

To see if we could reduce the number of machines infected at even higher in-
fectable percentages, we also simulated limiting the infection attempts to three
per infected node. The results are shown in figure 4.20. Based on this graph,
even at 100% of the nodes being infectable, fewer than 3,000 nodes are infected.
It is important to keep in mind that the Z-axis on these graphs are not averaged,
so fewer than 3,000 total nodes were infected over 20 runs of the experiment.
The difference between not having a limit on the infection attempts and limiting
them to three are shown in figure 4.21. Based on the graph in figure 4.20 it was
no surprise to see that the difference very closely matched the graph with no
suppression at all (figure 4.15).

Using Hephaestus we have shown that lossy detection can be an incred-
ibly powerful way to slow the spread of a virus even without having signature-
based anti-virus software installed on the potentially infected machines. It is
important, but somewhat counter-intuitive, to note that even though some in-
fection attempts do occur when a node first becomes infected the spread of
the virus is greatly reduced due to the virus attempting to infect already in-

59

fected nodes or uninfectable nodes. Therefore it is not necessary to block all
virus spread attempts in order to slow the virus spread down enough to update
anti-virus signatures and distribute them to all potentially infected machines.

Figure 4.20: Graph of virus spread while only allowing 3 outgoing infection
attempts per infected node

60

Figure 4.21: The difference in the total number of infected nodes between no
suppression and limiting the outgoing infection attempts per infected node to 3

4.4 Tarpits

Tom Liston has created a tool called LaBrea to slow down or stop the spread of
active worms[27]. It works by taking over unused IP addresses and creates “vir-
tual machines” that respond to requests to that IP address. When it responds
to the messages sent to the virtual address, it responds in such a way that the
machine at the other end of the request gets stuck. LaBrea then can hold that
connection open for a very long time so the machine at the other end is “stuck”
for a long time[16].

It is fairly simple to simulate this tool using Hephaestus to observe the
result of tarpits on various network configurations. The first thing we needed
to do was create a new type of actor called a TarpitNode. This node type
allows all incoming connections to succeed, but then never respond to infection
attempts. This will cause the node attempting to infect the TarpitNode to have
its connection stuck waiting for a response that will never occur.

We ran this experiment with four different configurations - 2% infectable,
5% infectable, 10% infectable, and 25% infectable. In all four configurations

61

there were a total of 200,000 nodes. In each configuration we varied the per-
centage of tarpits in the network from 2.5% to 25% in 2.5% increments for a
total of 10 configuration files in each of the four configurations. Each of these
percentages will be identified by the variable P in the equations below. The
configuration file had the format shown below:

.\actors\InfectableNodeLibrary.dll,NI,1,30,50

.\actors\UnInfectableNodeLibrary.dll,NU,1,50,10

.\actors\TarpitNodeLibrary.dll,NT,500,500,500

where NI was the number of infectable nodes (4,000 for the 2% configuration,
10,000 for the 5% configuration, etc), NT was defined by the equation

NT = 200000 ∗ (P/100) (4.5)

and NU was defined by the equation

NU = 200000−NT −NI (4.6)

The graphs of these experiments are shown in figures 4.22, 4.23, 4.24,
and 4.25. In each case if more than 5 or 10 percent of the nodes in the network
were tarpits, the spread of the virus was almost negligible until approximately
25% of the nodes being infectable. Even in that case, the spread of the virus
was signficantly less than it would have been if there were no tarpits on the
network.

In the graph of the 2% configuration (figure 4.22) there was an obvious
hill near 17.5% tarpits that increases when we expected it to steadily decrease
as the percentage of tarpits increased. There are other “jags” in the graph of
the 2% configuration whereas the other graphs are much smoother. The reason
for this is because of a combination of two factors. First, in the 2% graph the
scale on the Z-axis is small so any variations in the number infected will be
very obvious. Secondly, even though each experiment was run 20 times to help
average out the variations in randomness in the simulations due to the actual
random numbers chosen, if tarpits are selected for infection attempt early in
the execution when there are few infected nodes the spread of the virus will
not gain much ground at all. In other words, in this case 20 executions of the
experiment was not enough to make the graph as smooth as we expected.

Running this experiment under Hephaestus verifies that using tarpits
to slow or stop the spread of a malicious applications can be a very effective
technique, although a relatively large number of virtual machines are required
to fully stop the virus.

62

Figure 4.22: Graph of virus spread with tarpits and 2 percent of the nodes
infectable

63

Figure 4.23: Graph of virus spread with tarpits and 5 percent of the nodes
infectable

64

Figure 4.24: Graph of virus spread with tarpits and 10 percent of the nodes
infectable

65

Figure 4.25: Graph of virus spread with tarpits and 25 percent of the nodes
infectable

66

Chapter 5

Future Development Plans

Despite the power and flexibility of the Hephaestus simulation framework de-
scribed in this thesis, it is not yet the complete simulator it can become. This
section tries to outline tasks that should be taken into consideration when fu-
ture contributors enhance the framework. Even as this is being written, a few of
these tasks are already being implemented by Attila Ondi and Manan Pancholi
at Florida Institute of Technology, and we expect that work to continue well
into the future.

First, and most importantly, the current version of Hephaestus does not
understand network topologies. It also assumes that any node can complete
a connection or infection attempt to any other node in exactly one time step.
Of course, in a real network this is rarely the case. The current version also
assumes that each connection between two nodes has an unlimited bandwidth,
so this needs to be addressed as well. Alleviating these shortcomings is the task
Ondi and Pancholi are currently undertaking.

As part of adding capabilities to understand network topologies, Hep-
haestus also needs to have the ability to simulate network-based prevention
techniques. The current version of Hephaestus is extremely capable of simu-
lating host-based prevention techniques, but network-based techniques are still
unimplemented. As a proof of concept experiment, “sensor” nodes can be placed
in various locations throughout the network and attempt to slow or even stop
the spread of a virus from one side of the sensor node to the other. This could
in effect limit the spread of a virus to one large chunk of the network, rather
than having it spread to all corners of the network.

The current version of Hephaestus does not have any concept of a death
rate of infection or of a patch rate of infectable machines. Adding these two fea-
tures could potentially add more realism to the numbers and graphs generated
during simulations.

The concept of a “hitlist” does exist in the current version by the ex-

67

istence of an “initial infected count” parameter to the engine. Unfortunately
the location of the machines in the hitlist is generated randomly. This is fine
for the current version, but once network topology is accessible, this should be
expanded to infect specific machines at different points in the network, as this
could enhance the rate of spread of a virus.

Once Hephaestus is topology-aware, targeted scanning should be imple-
mented. Currently all connections and infections are attempted towards ran-
domly selected nodes. The simulated virus should be able to target specific
nodes in the network. This would allow somewhat more realistic simulation of
distributed denial-of-service attacks than what is currently available.

The random number generator chosen for random scanning is a very
important piece of any simulator. As a teaching tool, if the random number
generator was abstracted into a DLL, it would allow different random number
generators that are potentially less reliable than the Mersenne Twister to be
implemented to see how the random number generator used can affect the spread
of a virus. For instance, we could observe changes in the results of the simulator
if we use random scanning using the Mersenne Twister algorithm as compared
to the rand() function in the Windows C-Runtime Library, or against a poorly
seeded random number generator like the one that was used in the original Code
Red.

Hephaestus is a good simulation framework in its current state, with
the capability to expand and enhance the simulations it can perform. It is a
good teaching tool, as well as a good way to simulate the applicability of many
host-based prevention techniques. By adding just a few more features listed in
this section, Hephaestus can become a great tool with uses in academia and
industry.

68

Chapter 6

Summary

Malicious applications have become an increasingly frustrating and expensive
problem for computer users, both at home and in corporate environments.
Signature-based anti-virus software has become commonplace in an attempt
to protect these users from attacks. It is not working, so something more needs
to be done. If the solution to the anti-virus problem can not be solely signature
based, we need to know more about the lifespan of a virus. We need to know
how it attempts to attack other machines, how often it tries to attack other
machines, and which machines will let the attack succeed.

Other researchers have gone before us and have given us a good starting
point to understanding malicious code, but what is needed is a way to simulate
prevention techniques other than by signature-based anti-virus software. This
solution needs to be powerful and flexible, but still easy to use. That is exactly
what Hephaestus was designed to accomplish.

6.1 Our Results And Contributions

We have developed a framework for performing simulations of malicious applica-
tion spread over very large networks. In doing so, we have provided the capabil-
ity to add new actor types to the simulation. This allows prevention measures
to be simulated and instantly “plugged in” to the simulator framework. We
have also allowed customization of the individual experiments through the use
of configuration files. We have provided an easy-to-use Windows user interface
with built-in graphing capability to control the framework. As a result we have
developed a great teaching tool that professors can use to teach their students
how to think about malicious application spread and how to better prevent that
spread. We have also provided a command line interface to use to run multiple
experiments unattended using batch files. We have also documented how to use
the framework to run different experiments.

69

We used Hephaestus to verify that it produces results consistent with the
Weaver simulator[19] when parameters consistent with that experiment were
applied. We also verified the results of the Monoculture experiment performed
by Dr. Richard Ford[26]. We then presented results of two powerful prevention
techniques known as Lossy Detection and Tarpits and found them both to be
very effective, enough so to easily slow the spread of a virus to the point where
anti-virus signatures could be distributed before wide spread infection occurs.

6.2 Final Thoughts

The Hephaestus simulation framework is a fast, powerful, flexible framework for
examining the effects of various prevention measures on a virus. Although much
work has already been done on Hephaestus, there is much more development to
be done before it can be called complete (see Chapter 5). Already some of that
development has begun. It is our ultimate goal to have provided a simulator
that will enable companies in industry to develop and test novel ideas on how
to fix the malicious mobile code problem and reduce the $50+ billion in damage
caused every year. With the right exposure to those companies, we believe we
have accomplished this goal with Hephaestus.

70

Appendix A

Analysis of the Mersenne
Twister Pseudorandom Number
Generation Algorithm

In any malicious code spread simulator that uses random scanning to choose the
next node to try to infect, it is crucial to have a good random number generator.
If the random number generator used in the simulator does not generate truly
random numbers we will not be able to accurately simulate the spread of that
piece of malicious code.

But how does one ensure that numbers generated by a random number
generator algorithm are good enough? According to Banks, Carson, and Nelson
there are five tests to determine whether or not a random number generator gen-
erates truly random numbers - the Frequency, Runs, Autocorrelation, Gap, and
Poker tests[28]. The random number generator algorithm used in Hephaestus,
the Mersenne Twister Algorithm, was run through this series of tests as well as
one extra test, the Completeness Test, before being allowed to be included in
Hephaestus. The results of each of these tests for the algorithm follow after the
explanation of the algorithm itself.

A.1 The Mersenne Twister Pseudorandom

Number Generation Algorithm

The Mersenne Twister algorithm was invented by Matsumoto and Nishimura
and has several rather impressive properties as a random number generator. It
has a period of 219937 − 1, which means that the sequence of numbers generated
will only repeat after 219937 − 1 numbers has been generated. That number is
well beyond the limits of the period needed by Hephaestus or almost any other

71

application conceivable. The algorithm is also 623-dimensional equidistributed,
which means that there is virtually no correlation between a generated number
and its successor[29]. It is called the Mersenne Twister algorithm because of
its period. The 19937 exponent in the period of 219937 − 1 is a Mersenne Prime
(a number n in which 2n − 1 is a prime number)[30]. This particular Mersenne
Prime was discovered in 1971 by Tuckerman[30].

The algorithm is basically a linear-feedback shift register (a shift register
whose input is the exclusive-or of some of its outputs[31]) with a seed value of
19937 bits stored in an array of 624 32-bit integer fields. This leaves 31 bits
unused, and these bits are migrated throughout the array as more numbers are
generated so to produce a higher period in the generated numbers[32]. Source
code for the implementation is below

/* Period parameters */

#define N 624

#define M 397

#define MATRIX_A 0x9908b0df /* constant vector a */

#define UPPER_MASK 0x80000000 /* most significant w-r bits */

#define LOWER_MASK 0x7fffffff /* least significant r bits */

/* Tempering parameters */

#define TEMPERING_MASK_B 0x9d2c5680

#define TEMPERING_MASK_C 0xefc60000

#define TEMPERING_SHIFT_U(y) (y >> 11)

#define TEMPERING_SHIFT_S(y) (y << 7)

#define TEMPERING_SHIFT_T(y) (y << 15)

#define TEMPERING_SHIFT_L(y) (y >> 18)

#define DIVISOR 0xFFFFFFFF

static unsigned long mt[N]; /* the array for the state vector */

static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */

static unsigned long range; /* the range value for the upper bound of random numbers */

static unsigned long shiftright; /* Convenience - only need to calculate when we

init range */

/* initializing the array with a NONZERO seed */

void sgenrand(unsigned long seed)

{

/* setting initial seeds to mt[N] using */

/* the generator Line 25 of Table 1 in */

/* [KNUTH 1981, The Art of Computer Programming */

/* Vol. 2 (2nd Ed.), pp102] */

mt[0]= seed & 0xffffffff;

for (mti=1; mti<N; mti++)

mt[mti] = (69069 * mt[mti-1]) & 0xffffffff;

}

/**

* This function generates a random number between 0

* and 2^32 - 1

**/

unsigned long genrand()

{

unsigned long y;

static unsigned long mag01[2]={0x0, MATRIX_A};

/* mag01[x] = x * MATRIX_A for x=0,1 */

72

if (mti >= N) { /* generate N words at one time */

int kk;

if (mti == N+1) /* if sgenrand() has not been called, */

sgenrand(4357); /* a default initial seed is used */

for (kk=0;kk<N-M;kk++) {

y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);

mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];

}

for (;kk<N-1;kk++) {

y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);

mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];

}

y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);

mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];

mti = 0;

}

y = mt[mti++];

y ^= TEMPERING_SHIFT_U(y);

y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;

y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;

y ^= TEMPERING_SHIFT_L(y);

return y;

}

A.2 Frequency Test

The Frequency Test tests the uniformity of the generated numbers using the
Kolmogorov-Smirnov test[33]. This test measures how well the distribution of
the generated number matches the theoretical distribution of true randomness.
The results are then compared to a critical value which will either allow us to
reject the randomness of the algorithm or continue to try the other tests on more
random numbers. Note that the results can only allow us to reject the algorithm.
Not rejecting the randomness of the algorithm does not imply that we can
blindly reason that the algorithm produces truly random numbers. This test,
as well as the other four tests, only allow us to reject some obviously non-random
algorithms. There is no way to guarantee that numbers are truly random; in
fact, that the numbers are computed by a defined algorithm guarantees the
generated numbers are not truly random. The best an algorithm can hope to
accomplish is to simulate randomness well enough that implementers of the
algorithm are satisfied.

There are six steps to performing the Frequency Test, and they are listed
below:

1. Generate some random numbers

73

2. Sort the generated numbers from lowest to highest.

3. Compute D+ and D− using the equations:

D+ = max
1≤i≤N

{
i

N
−R(i)

}
(A.1)

D− = max
1≤i≤N

{
R(i) − i− 1

N

}
(A.2)

4. Compute D as follows:

D = max(D+, D−) (A.3)

5. Determine the critical value Dα for the specified significance level α and
sample size N

6. If D is greater than Dα we reject the randomness of the algorithm, other-
wise we continue to another test.

The numbers generated for the Frequency Test are listed in table A.1.
The same numbers, when sorted from least to greatest are listed in table A.2.
The value of D+ for these numbers is 0.120183978. The value of D− for these
numbers is 0.153916219. D then is equal to D−. Given a sample size of 35
and an α value of 0.05, Dα is 0.23[34]. Since D is less than Dα, the Mersenne
Twister’s randomness can not be rejected based on the Frequency Test.

0.328135132 0.094007755 0.777706933 0.788982696 0.582487648
0.601514765 0.096415540 0.735720048 0.822673164 0.672452017
0.616672127 0.079329750 0.214444376 0.692034661 0.805573514
0.060424835 0.507170467 0.604370462 0.100203250 0.248727390
0.632502295 0.167439384 0.733779989 0.900476184 0.729695989
0.657998779 0.123972001 0.857694353 0.284099798 0.284572988
0.739053965 0.068633097 0.510586272 0.783697488 0.710714413
Table A.1: Random Numbers Generated for the Frequency Test

0.060424835 0.068633097 0.079329750 0.094007755 0.096415540
0.100203250 0.123972001 0.167439384 0.214444376 0.248727390
0.284099798 0.284572988 0.328135132 0.507170467 0.510586272
0.582487648 0.601514765 0.604370462 0.616672127 0.632502295
0.657998779 0.672452017 0.692034661 0.710714413 0.729695989
0.733779989 0.735720048 0.739053965 0.777706933 0.783697488

74

0.788982696 0.805573514 0.822673164 0.857694353 0.900476184
Table A.2: Sorted Numbers for the Frequency Test

A.3 Runs Test

There are many sets of generated random numbers that may pass the Frequency
Test but are not uniformly distributed. For instance, truly random numbers will
be unlikely to have a large number of strictly increasing or strictly decreasing
values generated consecutively. Other similar potential problems exist if a large
sequence of numbers is either above or below the mean value, and also if the
length of each set of strictly increasing or decreasing numbers is longer than
would naturally appear. All these occurrences are unlikely to appear with truly
random numbers.

The Runs Test is really a set of three tests that test for each of these
conditions in a set of generated random numbers. Those three tests are demon-
strated for the Mersenne Twister algorithm in the next few sections. In each of
these tests we will compare the value we calculate from the generated numbers
to a theoretical value to see if we can reject the randomness of the Mersenne
Twister algorithm. Also in each of these tests the generated numbers used for
the tests are the same numbers as shown in Table A.1.

A.3.1 Number of Runs Up and Runs Down

A run up is a sequence of numbers in the number set that increase from one to
the next number. A run down is a sequence of numbers in the set that decrease
from one to the next number. The number of increases or decreases in each
run is called the run length. The first of the three Runs Tests simply count the
number of runs and compares that number to a theoretical expected value for
the number of runs.

If N is the number of generated numbers, there can only be at most
N − 1 runs in the set of numbers. The expected mean value of the sequence µa
for a set of numbers with a runs is given by the equation:

µa =
2N − 1

3
(A.4)

and the variance σ2
a is given by the equation:

σ2
a =

16N − 29

90
(A.5)

75

For large values of N (> 20) the distribution of a can be approximated as a
normal distribution, which means that a standardized normal test statistic Z0

can be defined as

Z0 =
a− µa
σa

(A.6)

which when expanded becomes

Z0 =
a− [2N−1

3
]√

16N−29
90

(A.7)

If Z0 is between -1.96 and 1.96 (Zα/2 for α = 0.05)[28], then we can not reject
the algorithm based on this test. For our generated numbers there were 10 runs
up and 11 runs down. The value of Z0 is -0.82338697, so we can not reject the
algorithm based on this run of the test.

A.3.2 Number of Runs Above and Below the Mean

This test compares the number of runs above and below the mean to a theoret-
ical value to see if the “random” numbers generated are sufficiently random. If
n1 is the number of values above the mean value of the set and n2 is the number
of values below the mean, then there is between 1 and N possible runs in the
data set where N = n1 + n2 . We will call the total number of runs b The new
equations for the mean µb, variance σ2

b , and test statistic Z0 become

µb =
2n1n2

N
+

1

2
(A.8)

σ2
b =

2n1n2(2n1n2 −N)

N2(N − 1)
(A.9)

Z0 =
b− 2n1n2

N
− 1

2√
2n1n2(2n1n2−N)

N2(N−1)

(A.10)

For the generated numbers we get a mean value of 0.499999995 and a Z0 value
of 0.426097832. This value is within the critical theoretical limits of -1.96 to
1.96, so we can not reject the algorithm based on the results of this test.

A.3.3 Length of Runs

This test compares the run length of each run against the expected value for
truly random numbers. If we call Yi the number of runs of length i in a sequence
of N numbers, the expected value of Yi becomes

E(Yi) =
2

(i+ 3)!
[N(i2 + 3i+ 1)− (i3 + 3i2 − i− 4)] (A.11)

76

when i ≤ N - 2, and

E(Yi) =
2

N !
(A.12)

when i = N - 1 for the number of runs up and down.
These values are compared against the theoretical values using a chi-

square test[35], and the test statistic χ2
0 is given by the equation

χ2
0 =

N−1∑
i=1

[Oi − E(Yi)]
2

E(Yi)
(A.13)

where Oi is the observed number of runs of length i in the number set.
For the numbers generated in A.1, χ2

0 equates to 2.41724675, and the
critical value of χ2

0 is 3.84, so we can not reject the randomness of the algorithm
for this test. Since we can not reject the randomness of the algorithm using
any of the three Runs Tests we can not reject the randomness of the algorithm
using the Runs Test.

A.4 Autocorrelation Test

It is possible that numbers generated can seem random while having a correla-
tion between some of the generated numbers. For instance if the third, sixth,
ninth, twelfth, etc. numbers in the set are all very large numbers, or are very
small numbers, or some have some other suspicious relationship then the num-
bers generated might not be sufficiently random for many applications. The
Autocorrelation Test checks for relationships like these. Unfortunately there
are hundreds of tests to run to ensure there are no such relationships even for
relatively small number sets, so we will show just one in this section.

In this example we will demonstrate there is no autocorrelation between
every five numbers in a generated set of numbers starting with the third number
in the set. Some variables and equations need to be defined to do run this test.
We will call m the lag between each number we want to test. In our case this
is 5. The starting number we will call i , which is 3. The autocorrelation we are
interested in is between the numbers Ri , Ri+m , . . ., Ri+(M +1)m , where Rj is the
j th number in the set of generated numbers. M is the largest integer such that
i + (M + 1)m ≤ N . N is the total number of values in the generated number
set.

Our test statistic can be defined by the equation

Z0 =
ρ̂im
σρ̂im

(A.14)

77

where ρ̂im and σρ̂im are defined as

ρ̂im =
1

M + 1
[
M∑

k=0

Ri+kmRi+(k+1)m]− 0.25 (A.15)

and

σρ̂im =

√
13M + 7

12(M + 1)
(A.16)

Table A.3 contains the numbers generated for the Autocorrelation Test.
Since we are using values of 5 for m and 3 for i , ρ̂35 = 0.0096 and σρ̂im = 0.0681.
Z0 therefore equates to 0.1410. The critical value for Z0 with α = 0.05 is 1.96.
Z0 is less than the critical value, so we can not reject the Mersenne Twister
algorithm based on this small part of a complete Autocorrelation Test.

0.42 0.12 0.99 0.74 0.76 0.12 0.94 0.86 0.78 0.10
0.27 0.88 0.07 0.64 0.77 0.12 0.31 0.80 0.21 0.93
0.93 0.84 0.15 0.36 0.36 0.94 0.08 0.65 0.90 0.48
0.24 0.32 0.03 0.50 0.88 0.63 0.92 0.73 0.98 0.98
0.76 0.54 0.00 0.58 0.98 0.75 0.52 0.50 0.79 0.08
0.57 0.88 0.37 0.28 0.51 0.07 0.50 0.34 0.79 0.38
0.07 0.00 0.91 0.70 0.21 0.99 0.33 0.61 0.16 0.36
0.42 0.51 0.06 0.01 0.08 0.23 0.61 0.49 0.71 0.65
0.95 0.76 0.06 0.33 0.83 0.51 0.26 0.46 0.01 0.10
0.48 0.59 0.23 0.17 0.97 0.09 0.31 0.35 0.48 0.48

Table A.3: Numbers Generated for the Autocorrelation Test

A.5 Gap Test

The Gap Test is used to check the significance or the interval between instances
of a particular digit in a set of generated numbers. For instance, given a set of
numbers: 4, 1, 3, 5, 1, 7, 2, 8, 2, 0, 7, 9, 1, 3 the gap length between instances of
the digit 3 is 10. In general, the probability of a gap of a given length is given
by the equation

P (t followed by exactly x non-t digits) = (0.9)x(0.1) (A.17)

and the probability that a gap is less than or equal to x for truly random
numbers is given by

F (x) = 0.1
x∑

n=0

(0.9)n = 1− 0.9x+1 (A.18)

78

There numbers generated for the Gap Test are listed in Table A.4. The
number of gaps for each digit 0 through 9 are listed in Table A.5. The Gap Test
data for the Mersenne Twister algorithm is listed in Table A.6. The number
of gaps in the data is the sample size minus the number of digits, or 110-
10=100. Using an α value of 0.05, the critical theoretical value Dα is 0.136[34].
D for the generated numbers is given by max |F (x)− SN(x)|, which equates
to 0.0653020189. Therefore we can not reject the Mersenne Twister algorithm
based on the Gap Test.

5 1 9 9 1 9 1 3 0 8 9 1 3 2 1 4 4 1 8 6 3 4
0 6 7 9 9 6 0 7 9 6 6 9 1 7 4 3 6 0 6 4 9 4
0 0 8 2 4 7 2 4 5 6 0 0 1 2 7 6 8 8 9 0 4 6
3 5 0 1 6 7 2 2 1 3 4 6 6 3 2 6 4 8 0 3 0 6
0 7 8 4 1 8 7 1 2 9 4 0 3 0 7 8 2 1 0 7 2 4

Table A.4: Numbers Generated for the Gap Test

Digit 0 1 2 3 4 5 6 7 8 9
Number of Gaps 15 12 9 8 13 2 14 9 8 10

Table A.5: Numbers Generated for the Gap Test

79

GapLength Frequency Relative CumulativeRelative F (x) |F (x)− SN (x)|
Frequency Frequency

0- 3 31 0.31 0.31 0.3439 0.0339
4- 7 31 0.31 0.62 0.5695 0.0505
8-11 12 0.12 0.74 0.7176 0.0224
12-15 14 0.14 0.88 0.8147 0.0653
16-19 5 0.05 0.93 0.8784 0.0516
20-23 2 0.02 0.95 0.9202 0.0298
24-27 1 0.01 0.96 0.9477 0.0123
28-31 1 0.01 0.97 0.9657 0.0043
32-35 2 0.02 0.99 0.9775 0.0125
36-39 0 0.00 0.99 0.9852 0.0048
40-43 0 0.00 0.99 0.9903 0.0003
44-47 0 0.00 0.99 0.9936 0.0036
48-51 1 0.01 1.00 0.9958 0.0042
52-55 0 0.00 1.00 0.9973 0.0027
56-59 0 0.00 1.00 0.9982 0.0018
60-63 0 0.00 1.00 0.9988 0.0012
64-67 0 0.00 1.00 0.9992 0.0008
68-71 0 0.00 1.00 0.9995 0.0005
72-75 0 0.00 1.00 0.9997 0.0003
76-79 0 0.00 1.00 0.9998 0.0002
80-83 0 0.00 1.00 0.9999 0.0001
84-87 0 0.00 1.00 0.9999 0.0001
88-91 0 0.00 1.00 0.9999 0.0001
92-95 0 0.00 1.00 1.0000 0.0000
96-99 0 0.00 1.00 1.0000 0.0000

Table A.6: Gap Test Data

A.6 Poker Test

The Poker Test is designed to detect large amount of digit repetition in a single
number. For instance the following numbers look suspicious as they all have a
pair of like digits: 0.255, 0.577, 0.331, 0.414, 0.828, 0.909, 0.303, 0.001. This
might be an indication that numbers are not as random as we would like them
to be.

Given a three-digit number, there are only three possibilities for digit
combinations, and they are listed below.

80

1. The individual digits can all be different.

2. The individual digits can all be the same.

3. There can be one pair of like digits.

The probability of each of these cases is given by the following:

P (3 different digits) = P (2nd 6=1st)×P (3rd 6=1stand2nd) = (0.9)(0.8) = 0.72
(A.19)

P (3 like digits) = P (2nd = 1st)×P (3rd = 1st) = (0.1)(0.1) = 0.01 (A.20)

P (exactly 1 pair) = 1− P (three different digits)− P (three like digits) = 0.27
(A.21)

The numbers used in the Poker Test are listed in Table A.7. The test
is a chi-square[35] similar to the Number of Runs Up and Down Test shown
earlier. Using a α value of 0.05, χ2

0 .05 ,2 = 5.99. The calculations for our data
are shown in Table A.8. χ2 is 3.70, which is less than 5.99 so we can not reject
the algorithm based on the Poker Test.

336 96 796 807 596 615 98 753 842 688
631 81 219 708 824 61 519 618 102 254
647 171 751 922 747 673 126 878 290 291
756 70 522 802 727 384 193 956 263 27
402 704 506 739 586 784 785 614 433 7
470 831 791 600 977 886 416 403 635 71
459 704 303 954 231 415 58 401 279 638
305 56 6 731 564 169 795 269 955 490
134 295 340 408 53 12 70 190 489 393
572 527 916 762 609 971 50 271 670 409

Table A.7: Numbers Generated for the Poker Test

Combination Observed (Oi) Expected (Ei)
(Oi−Ei)2

Ei

Three different digits 80 72 0.89
Three like digits 0 1 1.00

Three different digits 20 27 1.81
100 100 3.70

Table A.8: Calculations for the Poker Test

81

A.7 Completeness Test

A final test to complete to ensure that the numbers generated are sufficiently
random for most applications is to ensure that each and every number in a spec-
ified range will be generated eventually by the algorithm. This test requires no
mathematical formula to interpret the results of this test since it is so straight-
forward, so we simply set a range of 100000 numbers and generated hundreds of
thousands of numbers ensuring that every number from 0 to 99999 is generated.

In the first run of this test every number in the range was generated
within 1346457 total numbers generated. In the second run of this test every
number in the range was generated within 1163179 total numbers generated.
In the third and final run of this test every number in the range was generated
within 1294346 total numbers generated. Since every number in the range was
generated in all three runs of the Completeness Test, we can not reject the
randomness of the Mersenne Twister based on the Completeness Test.

A.8 Conclusions

We have shown the results of running the Mersenne Twister algorithm under
6 different tests to help ensure that the numbers generated by the algorithm
will simulate truly random numbers well enough for inclusion in Hephaestus.
The Frequency Test, Runs Test, Autocorrelation Test, Gap Test, Poker Test,
and Completeness Test were unable to provide evidence that the algorithm had
serious flaws in the randomness of the numbers generated by it. Since we can
not reject the randomness of the numbers generated by the Mersenne Twister
algorithm based on any of the tests listed in this appendix, we felt safe to use
this algorithm in Hephaestus when it needs to get random numbers during the
execution of the simulations.

A.9 Source Code Used for the Randomness Tests
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

#include <vector>

using namespace std;

/* Period parameters */

#define N 624

#define M 397

#define MATRIX_A 0x9908b0df /* constant vector a */

#define UPPER_MASK 0x80000000 /* most significant w-r bits */

#define LOWER_MASK 0x7fffffff /* least significant r bits */

82

/* Tempering parameters */

#define TEMPERING_MASK_B 0x9d2c5680

#define TEMPERING_MASK_C 0xefc60000

#define TEMPERING_SHIFT_U(y) (y >> 11)

#define TEMPERING_SHIFT_S(y) (y << 7)

#define TEMPERING_SHIFT_T(y) (y << 15)

#define TEMPERING_SHIFT_L(y) (y >> 18)

#define DIVISOR 0xFFFFFFFF

static unsigned long mt[N]; /* the array for the state vector */

static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */

static unsigned long range; /* the range value for the upper bound of random numbers */

static unsigned long shiftright; /* Convenience - only need to calculate when we

init range */

/* initializing the array with a NONZERO seed */

void sgenrand(unsigned long seed)

{

/* setting initial seeds to mt[N] using */

/* the generator Line 25 of Table 1 in */

/* [KNUTH 1981, The Art of Computer Programming */

/* Vol. 2 (2nd Ed.), pp102] */

mt[0]= seed & 0xffffffff;

for (mti=1; mti<N; mti++)

mt[mti] = (69069 * mt[mti-1]) & 0xffffffff;

}

/**

* This function generates a random number between 0

* and 2^32 - 1

**/

unsigned long genrand()

{

unsigned long y;

static unsigned long mag01[2]={0x0, MATRIX_A};

/* mag01[x] = x * MATRIX_A for x=0,1 */

if (mti >= N) { /* generate N words at one time */

int kk;

if (mti == N+1) /* if sgenrand() has not been called, */

sgenrand(4357); /* a default initial seed is used */

for (kk=0;kk<N-M;kk++) {

y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);

mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];

}

for (;kk<N-1;kk++) {

y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);

mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];

}

y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);

mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];

mti = 0;

}

y = mt[mti++];

y ^= TEMPERING_SHIFT_U(y);

y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;

83

y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;

y ^= TEMPERING_SHIFT_L(y);

return y;

}

void initmyrand(unsigned long myrange)

{

// Calculate what value of n works well...

int i;

myrange = myrange - 1;

range = myrange;

for (i=0; i<32; i++) {

if (myrange < pow (2, i))

{

break;

}

}

shiftright = 0xffffffff;

shiftright = (32 - i);

}

unsigned long myrand()

{

unsigned long liMyLong;

liMyLong = 0xffffffff;

do {

liMyLong = genrand();

liMyLong = liMyLong >> shiftright;

} while (liMyLong > range);

return (liMyLong);

}

void printNumbers(vector<double> &numArray)

{

vector<double>::iterator iter = numArray.begin();

for (int i = 0; i < 7; i++)

{

for (int j = 0; j < 5; j++)

{

if (iter != numArray.end())

{

if (j > 0)

printf("\t");

printf ("%0.9f", *iter);

}

iter++;

}

printf("\n");

}

}

void printThreePrecisionNumbers(vector<unsigned long> &numArray)

{

vector<unsigned long>::iterator iter = numArray.begin();

for (int i = 0; i < 10; i++)

{

for (int j = 0; j < 10; j++)

{

84

if (iter != numArray.end())

{

if (j > 0)

printf("\t");

printf ("%3d", *iter);

}

iter++;

}

printf("\n");

}

}

void printTwoPrecisionNumbers(vector<double> &numArray)

{

vector<double>::iterator iter = numArray.begin();

for (int i = 0; i < 10; i++)

{

for (int j = 0; j < 10; j++)

{

if (iter != numArray.end())

{

if (j > 0)

printf("\t");

printf ("%0.2f", *iter);

}

iter++;

}

printf("\n");

}

}

void printIntegers(vector<unsigned long> &intArray)

{

vector<unsigned long>::iterator iter = intArray.begin();

for (int i = 0; i < 5; i++)

{

for (int j = 0; j < 22; j++)

{

if (iter != intArray.end())

{

if (j > 0)

printf(" ");

printf ("%u", *iter);

}

iter++;

}

printf("\n");

}

}

void generateNumbers(vector<double> &numArray)

{

sgenrand((long)time(NULL));

for (int i = 0; i < 35; i++)

{

unsigned long random = genrand();

double dbl = (double)random / (double)DIVISOR;

85

numArray.push_back(dbl);

}

}

void generateThreePrecisionNumbers(vector<unsigned long> &numArray)

{

sgenrand((long)time(NULL));

initmyrand(1000);

for (int i = 0; i < 100; i++)

{

unsigned long random = myrand();

numArray.push_back(random);

}

}

void generateTwoPrecisionNumbers(vector<double> &numArray)

{

sgenrand((long)time(NULL));

initmyrand(100);

for (int i = 0; i < 100; i++)

{

unsigned long random = myrand();

double result = random / 100.0;

numArray.push_back(result);

}

}

void generateIntegers(vector<unsigned long> &intArray)

{

sgenrand((long)time(NULL));

initmyrand(10);

for (int i = 0; i < 110; i++)

{

unsigned long random = myrand();

intArray.push_back(random);

}

}

void sortNumbers(vector<double> &unorderedNums, vector<double> &orderedNums)

{

// use a simple selection sort

orderedNums.clear();

orderedNums.push_back(unorderedNums[0]);

for (int i = 1; i < 35; i++)

{

bool found = false;

vector<double>::iterator iter = orderedNums.begin();

while (iter != orderedNums.end())

{

if (unorderedNums[i] < *iter)

{

orderedNums.insert(iter, unorderedNums[i]);

found = true;

break;

}

iter++;

}

if (!found)

orderedNums.push_back(unorderedNums[i]);

86

}

}

bool doFrequencyTest(vector<double> &numArray)

{

printf("\nPerforming Frequency Test using Kolmogorov-Smirnov method\n");

printf("\tN = 35; alpha = 0.05\n\n");

vector<double> orderedNumbers;

sortNumbers(numArray, orderedNumbers);

printf("Sorted numbers:\n");

printNumbers(orderedNumbers);

// calculate d+ and d- values

vector<double> dPlus, dMinus;

for (unsigned int i = 0; i < orderedNumbers.size(); i++)

{

int iValue = i + 1;

double iDivN = (double)iValue / (double)35;

double dPlusVal = iDivN - orderedNumbers[i];

double dMinusVal = orderedNumbers[i] - ((double)i / (double)35);

dPlus.push_back(dPlusVal);

dMinus.push_back(dMinusVal);

}

printf("\nD+ Values:\n");

printNumbers(dPlus);

printf("\nD- Values:\n");

printNumbers(dMinus);

double criticalDValue = 0.23;

printf("\nCritical value of D with alpha 0.05, n 35 is 0.23\n" \

"by table A.8 of Banks, Carlson, Nelson.\n\n");

bool testPassed = true;

for (unsigned int i = 0; i < orderedNumbers.size(); i++)

{

if ((dPlus[i] > criticalDValue) || (dMinus[i] > criticalDValue))

{

testPassed = false;

printf("FREQUENCY TEST failed for value i=%d\n\n", i);

return false;

}

}

if (testPassed)

{

printf("FREQUENCY TEST Passed for all values\n\n");

return true;

}

return false;

}

bool doRunsUpAndDownTest(vector<double> &numArray)

{

printf("\nPerforming Runs Up And Down Test\n");

printf("Numbers again:\n");

printNumbers(numArray);

double lastNum = 0;

char lastChar = ’ ’;

87

char thisChar;

int runsUp = 0;

int runsDown = 0;

vector<double>::iterator iter = numArray.begin();

while (iter != numArray.end())

{

lastNum = *iter;

iter++;

if (iter != numArray.end())

{

if (*iter > lastNum)

{

thisChar = ’+’;

if (lastChar != thisChar)

runsUp++;

}

else if (*iter < lastNum)

{

thisChar = ’-’;

if (lastChar != thisChar)

runsDown++;

}

else

{

thisChar = ’ ’;

}

printf("%c", thisChar);

lastChar = thisChar;

}

}

printf("\n");

printf("Runs Up - %d\n", runsUp);

printf("Runs Down - %d\n", runsDown);

int totalRuns = runsUp + runsDown;

printf("Total - %d\n", totalRuns);

// via formula at the bottom of page 304 of banks, carlson, nelson

double numPart1 = 2 * numArray.size() - 1;

double numPart2 = numPart1 / 3.0;

double num = totalRuns - numPart2;

double denPart1 = (16 * numArray.size()) - 29;

double denPart2 = denPart1 / 90.0;

double den = sqrt(denPart2);

double z0 = num / den;

printf("Z0 = %0.9g\n", z0);

printf("Zsub0.0025 = 1.96\n");

if ((z0 >= -1.96) && (z0 <= 1.96))

{

printf("Z0 is within the acceptable limits (-1.96 to 1.96)\n" \

"RUNS UP AND DOWN TEST PASSED\n");

return true;

}

printf("RUNS UP AND DOWN TEST FAILED\n");

return false;

}

bool doRunsAboveAndBelowMeanTest(vector<double> &numArray)

{

88

double mean = 0.99999999 / 2.0;

printf("\nPerforming Runs Above and Below Mean Test\n");

printf("Numbers again:\n");

printNumbers(numArray);

printf("Mean is %0.9g\n", mean);

char lastChar = ’ ’;

char thisChar;

int runsAbove = 0;

int runsBelow = 0;

int numAbove = 0;

int numBelow = 0;

vector<double>::iterator iter = numArray.begin();

while (iter != numArray.end())

{

if (*iter > mean)

{

thisChar = ’+’;

numAbove++;

if (lastChar != thisChar)

runsAbove++;

}

else if (*iter < mean)

{

numBelow++;

thisChar = ’-’;

if (lastChar != thisChar)

runsBelow++;

}

else

{

thisChar = ’ ’;

}

printf("%c", thisChar);

lastChar = thisChar;

iter++;

}

printf("\n");

printf("Runs Above - %d\n", runsAbove);

printf("Runs Below - %d\n", runsBelow);

int totalRuns = runsAbove + runsBelow;

printf("Total Runs - %d\n", totalRuns);

double Nval = numArray.size();

// formula from the bottom of page 306 in banks, carlson, nelson

double numPart1 = (double)(2 * numAbove * numBelow) / Nval;

double num = (double)totalRuns - numPart1 - 0.5;

double denNumPart1 = 2 * numAbove * numBelow;

double denNumPart2 = 2 * numAbove * numBelow - Nval;

double denNum = denNumPart1 * denNumPart2;

double denDen = ((Nval * Nval) * (Nval - 1));

double den = sqrt(denNum / denDen);

double z0 = num / den;

printf("Z0 = %0.9g\n", z0);

printf("Zsub0.0025 = 1.96\n");

89

if ((z0 >= -1.96) && (z0 <= 1.96))

{

printf("Z0 is within the acceptable limits (-1.96 to 1.96)\n" \

"RUNS ABOVE AND BELOW TEST PASSED\n");

return true;

}

printf("RUNS ABOVE AND BELOW TEST FAILED\n");

return false;

}

double factorial(int value)

{

if (value == 1)

return 1;

return value * factorial(value - 1);

}

bool doRunLengthTest(vector<double> &numArray)

{

printf("\nPerforming Runs Length Test (using Runs up and down)\n");

printf("Numbers again:\n");

printNumbers(numArray);

double lastNum = 0;

char lastChar = ’ ’;

char thisChar;

int runsUp = 0;

int runsDown = 0;

vector<int> observedRunLengths;

int currentRunLength = -1;

// fill the observed lengths with zeroes

for (unsigned int i = 0; i < numArray.size(); i++)

{

observedRunLengths.push_back(0);

}

vector<double>::iterator iter = numArray.begin();

bool firstTime = true;

while (iter != numArray.end())

{

currentRunLength++;

lastNum = *iter;

iter++;

if (iter != numArray.end())

{

if (*iter > lastNum)

{

thisChar = ’+’;

if (lastChar != thisChar)

runsUp++;

}

else if (*iter < lastNum)

{

thisChar = ’-’;

if (lastChar != thisChar)

runsDown++;

}

else

90

{

thisChar = ’ ’;

}

// check run length, but don’t do for the first time through

if ((lastChar != thisChar) && !firstTime)

{

observedRunLengths[currentRunLength]++;

currentRunLength = 0;

}

printf("%c", thisChar);

lastChar = thisChar;

firstTime = false;

}

}

observedRunLengths[currentRunLength]++;

printf("\n");

printf("Runs Up - %d\n", runsUp);

printf("Runs Down - %d\n", runsDown);

int totalRuns = runsUp + runsDown;

printf("Total - %d\n", totalRuns);

double Nval = numArray.size();

double x0squared = 0;

for (int j = 1; j < totalRuns; j++)

{

double eyj = 0;

if (j <= Nval - 2)

{

double den = factorial(j + 3);

double numPart1 = (j * j) + (3 * j) + 1;

double numPart2 = (j * j * j) + (3 * j * j) - j - 4;

double numPart3 = Nval * numPart1;

double numPart4 = numPart3 - numPart2;

double num = 2 * numPart4;

eyj = num / den;

}

else

{

double num = 2;

double den = factorial((int)Nval);

eyj = num / den;

}

double thisIterNumPart1 = observedRunLengths[j] - eyj;

double thisIterNum = thisIterNumPart1 * thisIterNumPart1;

double thisIter = thisIterNum / eyj;

x0squared += thisIter;

}

printf("x0 squared = %0.9g\n", x0squared);

if (x0squared <= 3.84)

{

printf("x0 squared is less than the critical value 3.84, " \

"so RUN LENGTH TEST PASSED\n");

return true;

91

}

printf("x0 squared is more than the critical value 3.84, " \

"so RUN LENGTH TEST FAILED\n");

return false;

}

bool doRunsTest(vector<double> &numArray)

{

printf("\nPerforming Runs Tests\n");

bool result = doRunsUpAndDownTest(numArray);

result = result && doRunsAboveAndBelowMeanTest(numArray);

result = result && doRunLengthTest(numArray);

return result;

}

unsigned long getNumberOfGaps(vector<unsigned long> &intArray, unsigned long digit)

{

vector<unsigned long>::iterator iter = intArray.begin();

bool hasFoundDigit = false;

unsigned long gaps = 0;

while (iter != intArray.end())

{

if (*iter == digit)

{

if (hasFoundDigit)

gaps++;

hasFoundDigit = true;

}

iter++;

}

return gaps;

}

void getGapLengths(vector<unsigned long> &intArray, unsigned long *lengths)

{

for (int i = 0; i < 10; i++)

{

vector<unsigned long>::iterator iter = intArray.begin();

bool hasFoundDigit = false;

unsigned long gaps = 0;

unsigned long currentGapLength = 0;

while (iter != intArray.end())

{

if (*iter == i)

{

if (hasFoundDigit)

{

gaps++;

lengths[currentGapLength]++;

currentGapLength = 0;

}

hasFoundDigit = true;

}

else if (hasFoundDigit)

{

currentGapLength++;

}

92

iter++;

}

}

}

bool doGapTest(vector<unsigned long> &intArray)

{

printf("\nPerforming Gap Test\n");

printf("The random integers for the test are:\n");

printIntegers(intArray);

int i = 0;

printf("\nNumber of gaps for each digit, 0 - 9\n");

for (i = 0; i < 10; i++)

{

if (i > 0)

printf(" ");

printf("%u", getNumberOfGaps(intArray, i));

}

printf("\n");

unsigned long gapLengths[110];

memset(gapLengths, 0, sizeof(unsigned long) * 110);

getGapLengths(intArray, gapLengths);

printf("\nGap Len Freq Rel Freq Cumul Rel Freq F(x) |F(x)-S(x)|\n");

printf("--\n");

double cumRelFreq = 0;

double max = 0;

for (i = 0; i < 100; i+= 4)

{

printf("%4d-%2d ", i, i + 3);

int freq = 0;

for (int j = i; j <= i + 3; j++)

{

freq += gapLengths[j];

}

printf("%4d ", freq);

double relFreq = (double)freq / 100.0;

printf(" %0.2f ", relFreq);

cumRelFreq += relFreq;

printf(" %0.2f ", cumRelFreq);

double fx = 1.0 - pow(0.9, i+4);

printf("%0.4f ", fx);

double result = 0;

if (fx > cumRelFreq)

result = fx - cumRelFreq;

else

result = cumRelFreq - fx;

printf(" %0.4f", result);

if (result > max)

max = result;

printf("\n");

}

double dAlpha = 1.36 / sqrt((double)100);

93

printf("\nCritical value of D alpha is %0.9g\n", dAlpha);

printf("Max D from table is %0.9g\n", max);

if (max < dAlpha)

{

printf("GAP TEST PASSED\n");

return true;

}

printf("GAP TEST FAILED\n");

return false;

}

bool doPokerTest(vector<unsigned long> &numArray)

{

printf("\nPerforming Poker Test\n");

printf("The random numbers for the test are:\n");

printThreePrecisionNumbers(numArray);

int expectedNoPairs = (int)(0.72 * numArray.size());

int expectedThreeAlike = (int)(0.01 * numArray.size());

int expectedTwoAlike = (int)(0.27 * numArray.size());

int foundNoPairs = 0;

int foundThreeAlike = 0;

int foundTwoAlike = 0;

for (unsigned int i = 0; i < numArray.size(); i++)

{

unsigned long thisValue = numArray.at(i);

int thirdDigit = (int)(thisValue % 10);

thisValue /= 10;

int secondDigit = (int)(thisValue % 10);

thisValue /= 10;

int firstDigit = thisValue;

// check for no like digits

if ((firstDigit != secondDigit) &&

(secondDigit != thirdDigit) &&

(firstDigit != thirdDigit))

{

foundNoPairs++;

continue;

}

// check for all the same

if ((firstDigit == secondDigit) &&

(firstDigit == thirdDigit))

{

foundThreeAlike++;

continue;

}

foundTwoAlike++;

}

double noPairsResult = (double)(foundNoPairs - expectedNoPairs);

noPairsResult *= noPairsResult;

noPairsResult /= (double)expectedNoPairs;

94

double threeAlikeResult = (double)(foundThreeAlike - expectedThreeAlike);

threeAlikeResult *= threeAlikeResult;

threeAlikeResult /= (double)expectedThreeAlike;

double twoAlikeResult = (double)(foundTwoAlike - expectedTwoAlike);

twoAlikeResult *= twoAlikeResult;

twoAlikeResult /= (double)expectedTwoAlike;

double totalResult = noPairsResult + threeAlikeResult + twoAlikeResult;

printf("\n");

printf("Combination Observed (Oi) Expected (Ei) ((Oi - Ei)^2)/Ei\n");

printf("--\n");

printf("Three different digits %3d %3d %0.2f\n",

foundNoPairs, expectedNoPairs, noPairsResult);

printf("Three like digits %3d %3d %0.2f\n",

foundThreeAlike, expectedThreeAlike, threeAlikeResult);

printf("Three different digits %3d %3d %0.2f\n",

foundTwoAlike, expectedTwoAlike, twoAlikeResult);

printf(" --- --- ----------\n");

printf(" %3d %3d %0.2f\n\n",

foundNoPairs + foundThreeAlike + foundTwoAlike, expectedNoPairs +

expectedThreeAlike + expectedTwoAlike, totalResult);

if (totalResult <= 5.99)

{

printf("x0 squared is %0.2f, which less than the critical value 5.99, " \

"so POKER TEST PASSED\n", totalResult);

return true;

}

printf("x0 squared is %0.2f, which is more than the critical value 5.99, " \

"so POKER TEST FAILED\n", totalResult);

return false;

}

bool doSampleAutocorrelationTest(vector<double> &numArray)

{

printf("\nPerforming Sample Autocorrelation Test\n");

printf("The random numbers for the test are:\n");

printTwoPrecisionNumbers(numArray);

printf("\nTesting autocorrelation of every 5 numbers " \

"starting at the 3rd number.\n\n");

int firstI = 3;

int gap = 5;

double mDouble = numArray.size() - firstI;

mDouble /= (double)gap;

mDouble -= 1;

int m = (int)mDouble;

double pHat = 0;

for (int i = 0; i < m; i++)

{

double toAdd = numArray.at(firstI + (i * gap)) *

numArray.at(firstI + ((i + 1) * gap));

pHat += toAdd;

}

pHat = ((1.0 / (m + 1)) * pHat) - 0.25;

95

double sigmaPHat = (13 * m) + 7;

sigmaPHat = sqrt(sigmaPHat);

sigmaPHat /= (12 * (m + 1));

double z0 = pHat / sigmaPHat;

double critical = 1.96;

printf("p-hat = %0.4f\n", pHat);

printf("sigma p-hat = %0.4f\n", sigmaPHat);

printf("z0 = p-hat / sigma p-hat = %0.4f\n\n", z0);

if (abs(z0) < critical)

{

printf("The absolute value of z0 is %0.4f, " \

"which is less than the critical value %0.4f" \

", so AUTOCORRELATION SAMPLE TEST PASSED\n", abs(z0), critical);

return true;

}

printf("The absolute value of z0 is %0.4f, " \

"which is more than the critical value %0.4f" \

", so AUTOCORRELATION SAMPLE TEST FAILED\n", abs(z0), critical);

return false;

}

bool doCompletenessTest()

{

printf("\nPerforming Completeness Test For 100000 numbers\n");

bool numbers[100000];

sgenrand((long)time(NULL));

initmyrand(100000);

memset(numbers, 0, 100000 * sizeof(bool));

bool complete = false;

unsigned long count = 0;

while (!complete && (count < 0xFFFFFFFF))

{

unsigned long thisNum = myrand();

numbers[thisNum] = true;

count++;

// check to see if they are done

complete = true;

for (unsigned long i = 0; i < 100000; i++)

{

if (!numbers[i])

{

complete = false;

break;

}

}

}

if (complete)

printf("Completeness Test Passed for 100000 numbers " \

"after %u generated numbers\n", count - 1);

else

printf("Completeness Test Failed!\n");

96

return complete;

}

void main(int argc, char **argv)

{

vector<double> numbers;

vector<unsigned long> threePrecNumbers;

vector<unsigned long> integers;

vector<double> twoPrecNumbers;

generateNumbers(numbers);

generateIntegers(integers);

generateTwoPrecisionNumbers(twoPrecNumbers);

generateThreePrecisionNumbers(threePrecNumbers);

printNumbers(numbers);

bool result = doFrequencyTest(numbers);

if (!result)

{

printf("RANDOMNESS TEST FAILED!\n");

return;

}

result = doRunsTest(numbers);

if (!result)

{

printf("RANDOMNESS TEST FAILED!\n");

return;

}

result = doSampleAutocorrelationTest(twoPrecNumbers);

if (!result)

{

printf("RANDOMNESS TEST FAILED!\n");

return;

}

result = doGapTest(integers);

if (!result)

{

printf("RANDOMNESS TEST FAILED!\n");

return;

}

result = doPokerTest(threePrecNumbers);

if (!result)

{

printf("RANDOMNESS TEST FAILED!\n");

return;

}

result = doCompletenessTest();

if (!result)

{

printf("RANDOMNESS TEST FAILED!\n");

return;

}

printf("RANDOMNESS TEST PASSED!\n");

}

97

Appendix B

Source Code For An Actor
Library

As a reference to use in creating new actor libraries, the full source code for the
LimitedConnectionsNodeLibrary actor library is included in this chapter. This
code compiles with no errors or warnings under Microsoft Visual Studio .NET
2003.

B.1 LimitedConnectionsNodeLibrary.h
//***

// FILE: LimitedConnectionsNodeLibrary.h

//

// AUTHOR: Christopher Brian Shirey

// Florida Institute Of Technology

// Department of Computer Science

//

// CREATED: February 27, 2004

//

// DESCRIPTION: Contains definition for the class LimitedConnectionsNodeLibrary

//***

#pragma once

#include "NodeLibrary.h"

using namespace SimulatorEngine;

namespace LimitedConnectionsLibrary

{

//***

// represents the library for infectable network nodes

//***

class NodeLibraryApi LimitedConnectionsNodeLibrary : public NodeLibrary

{

public:

LimitedConnectionsNodeLibrary();

~LimitedConnectionsNodeLibrary();

virtual NetworkNode *CreateNode(vector<string> *params, unsigned short numSockets,

98

unsigned short timeOut, unsigned char numConnections);

};

}

//***

// Method: GetLibraryNetworkNode

// Description: returns an instance of this library

//

// Parameters:

// None

//

// Return Value: a new instance of this library

//***

NodeLibrary *GetLibraryNetworkNode()

{

return new LimitedConnectionsLibrary::LimitedConnectionsNodeLibrary();

}

B.2 LimitedConnectionsNodeLibrary.cpp
//***

// FILE: LimitedConnectionsNodeLibrary.cpp

//

// AUTHOR: Christopher Brian Shirey

// Florida Institute Of Technology

// Department of Computer Science

//

// CREATED: February 27, 2004

//

// DESCRIPTION: Contains implementation for the class LimitedConnectionsNodeLibrary

//***

#define NodeLibrary_File

#include "LimitedConnectionsNodeLibrary.h"

#include "LimitedConnectionsNode.h"

namespace LimitedConnectionsLibrary

{

//***

// Method: LimitedConnectionsNodeLibrary

// Description: Constructor for the LimitedConnectionsNodeLibrary class

//

// Parameters:

// None

//

// Return Value: None

//***

LimitedConnectionsNodeLibrary::LimitedConnectionsNodeLibrary()

{

}

//***

// Method: ~LimitedConnectionsNodeLibrary

// Description: Destructor for the LimitedConnectionsNodeLibrary class

//

// Parameters:

// None

//

// Return Value: None

//***

99

LimitedConnectionsNodeLibrary::~LimitedConnectionsNodeLibrary()

{

}

//***

// Method: CreateNode

// Description: Creates an infectable node and returns it

//

// Parameters:

// params - a list of param strings to pass to the node

// numSockets - the number of sockets for the new node

// timeOut - the timeout for the new node

// numConnections - the number of connection attempts for the new node

//

// Return Value: a new infectable network node

//***

NetworkNode *LimitedConnectionsNodeLibrary::CreateNode(vector<string> *params,

unsigned short numSockets, unsigned short timeOut, unsigned char numConnections)

{

LimitedConnectionsNode *node = new LimitedConnectionsNode(params);

node->SetSockets(numSockets);

node->SetTimeOut(timeOut);

node->SetConnectionAttempts(numConnections);

return node;

}

}

B.3 LimitedConnectionsNode.h
//***

// FILE: LimitedConnectionsNode.h

//

// AUTHOR: Christopher Brian Shirey

// Florida Institute Of Technology

// Department of Computer Science

//

// CREATED: February 27, 2004

//

// DESCRIPTION: Contains definition for the class LimitedConnectionsNode

//***

#pragma once

#include "NetworkNode.h"

namespace LimitedConnectionsLibrary

{

//***

// represents an infectable network node

//***

class NodeLibraryApi LimitedConnectionsNode : public SimulatorEngine::NetworkNode

{

public:

LimitedConnectionsNode(vector<string> *params);

~LimitedConnectionsNode();

virtual bool WillAttemptToConnectToNode(NetworkNode *nodeToConnectTo);

virtual SimulatorEngine::ConnectionResult ConnectToNode(NetworkNode *connectingNode,

NetworkNode *nodeToConnect, unsigned short timeSocketHasBeenOpen);

virtual SimulatorEngine::InfectionResult AttemptToBeInfected(

NetworkNode *infectingNode);

100

protected:

unsigned int numConnectionsLimitedTo;

};

}

B.4 LimitedConnectionsNode.cpp
//***

// FILE: LimitedConnectionsNode.cpp

//

// AUTHOR: Christopher Brian Shirey

// Florida Institute Of Technology

// Department of Computer Science

//

// CREATED: February 27, 2004

//

// DESCRIPTION: Contains implementation for the class LimitedConnectionsNode

//***

#define NodeLibrary_File

#include <windows.h>

#include "LimitedConnectionsNode.h"

namespace LimitedConnectionsLibrary

{

//***

// Method: LimitedConnectionsNode

// Description: Constructor for the LimitedConnectionsNode class

//

// Parameters:

// params - a list of parameter strings

//

// Return Value: None

//***

LimitedConnectionsNode::LimitedConnectionsNode(vector<string> *params)

: NetworkNode(params)

{

infectable = true;

infected = false;

type = "Limited Connections Node";

numConnectionsLimitedTo = 10;

if (params && (params->size() > 0))

{

numConnectionsLimitedTo = atoi(params->at(0).c_str());

}

}

//***

// Method: ~LimitedConnectionsNode

// Description: Destructor for the LimitedConnectionsNode class

//

// Parameters:

// None

//

// Return Value: None

//***

LimitedConnectionsNode::~LimitedConnectionsNode()

{

}

101

//***

// Method: WillAttemptToConnectToNode

// Description: returns whether or not this node will attempt to connect

// to the specified node

//

// Parameters:

// nodeToConnectTo - the node to determine whether or not to connect to

//

// Return Value: a connection result enumeration

//***

bool LimitedConnectionsNode::WillAttemptToConnectToNode(NetworkNode *nodeToConnectTo)

{

if (this->GetNumConnectionsFrom() > numConnectionsLimitedTo)

return false;

return true;

}

//***

// Method: ConnectToNode

// Description: tries to connect to this node from another node

//

// Parameters:

// connectingNode - the node trying to connect

// nodeToConnect - the node being connected to

// timeSocketHasBeenOpen - the number of timesteps the socket has been open

// between the 2

//

// Return Value: a connection result enumeration

//***

SimulatorEngine::ConnectionResult LimitedConnectionsNode::ConnectToNode(

NetworkNode *connectingNode, NetworkNode *nodeToConnect,

unsigned short timeSocketHasBeenOpen)

{

return SimulatorEngine::Success;

}

//***

// Method: AttemptToBeInfected

// Description: tries to be infected by the infectingNode

//

// Parameters:

// infectingNode - the node trying to infect this one

//

// Return Value: a infection result enumeration

//***

SimulatorEngine::InfectionResult LimitedConnectionsNode::AttemptToBeInfected(

NetworkNode *infectingNode)

{

return SimulatorEngine::Infected;

}

}

//***

// Method: DidNetworkNodeComeFromThisLibrary

// Description: determines whether or not a network node was created by this

// library

//

// Parameters:

// node - the node to test

//

102

// Return Value: true if this dll created the node, false otherwise

//***

bool DidNetworkNodeComeFromThisLibrary(SimulatorEngine::NetworkNode *node)

{

return (static_cast<LimitedConnectionsLibrary::LimitedConnectionsNode *>

(node) != NULL);

}

B.5 LimitedConnectionsNodeLibrary.def
LIBRARY LimitedConnectionsNodeLibrary

EXPORTS

GetLibraryNetworkNode

DidNetworkNodeComeFromThisLibrary

B.6 LimitedConnectionsNodeLibrary.vcproj
<?xml version="1.0" encoding="Windows-1252"?>

<VisualStudioProject

ProjectType="Visual C++"

Version="7.10"

Name="LimitedConnectionsNodeLibrary"

ProjectGUID="{39770D7C-9B00-48E3-B862-3F3E8F8005AC}"

Keyword="Win32Proj">

<Platforms>

<Platform

Name="Win32"/>

</Platforms>

<Configurations>

<Configuration

Name="Debug|Win32"

OutputDirectory="Debug"

IntermediateDirectory="Debug"

ConfigurationType="2"

CharacterSet="2">

<Tool

Name="VCCLCompilerTool"

Optimization="0"

AdditionalIncludeDirectories="..\hephaestusengine"

PreprocessorDefinitions="WIN32;_DEBUG;_WINDOWS;_USRDLL" \

";LIMITEDCONNECTIONSNODELIBRARY_EXPORTS"

MinimalRebuild="TRUE"

BasicRuntimeChecks="3"

RuntimeLibrary="2"

UsePrecompiledHeader="0"

WarningLevel="3"

Detect64BitPortabilityProblems="TRUE"

DebugInformationFormat="4"/>

<Tool

Name="VCCustomBuildTool"/>

<Tool

Name="VCLinkerTool"

AdditionalDependencies="hephaestusengine.lib"

OutputFile="$(OutDir)/LimitedConnectionsNodeLibrary.dll"

LinkIncremental="2"

AdditionalLibraryDirectories="..\hephaestusengine\debug"

ModuleDefinitionFile="LimitedConnectionsNodeLibrary.def"

GenerateDebugInformation="TRUE"

103

ProgramDatabaseFile="$(OutDir)/LimitedConnectionsNodeLibrary.pdb"

SubSystem="2"

ImportLibrary="$(OutDir)/LimitedConnectionsNodeLibrary.lib"

TargetMachine="1"/>

<Tool

Name="VCMIDLTool"/>

<Tool

Name="VCPostBuildEventTool"

CommandLine="copy debug\LimitedConnectionsNodelibrary.dll ..\actors"/>

<Tool

Name="VCPreBuildEventTool"/>

<Tool

Name="VCPreLinkEventTool"/>

<Tool

Name="VCResourceCompilerTool"/>

<Tool

Name="VCWebServiceProxyGeneratorTool"/>

<Tool

Name="VCXMLDataGeneratorTool"/>

<Tool

Name="VCWebDeploymentTool"/>

<Tool

Name="VCManagedWrapperGeneratorTool"/>

<Tool

Name="VCAuxiliaryManagedWrapperGeneratorTool"/>

</Configuration>

<Configuration

Name="Release|Win32"

OutputDirectory="Release"

IntermediateDirectory="Release"

ConfigurationType="2"

CharacterSet="2">

<Tool

Name="VCCLCompilerTool"

AdditionalIncludeDirectories="..\hephaestusengine"

PreprocessorDefinitions="WIN32;NDEBUG;_WINDOWS;_USRDLL;

LIMITEDCONNECTIONSNODELIBRARY_EXPORTS"

RuntimeLibrary="2"

UsePrecompiledHeader="0"

WarningLevel="3"

Detect64BitPortabilityProblems="TRUE"

DebugInformationFormat="3"/>

<Tool

Name="VCCustomBuildTool"/>

<Tool

Name="VCLinkerTool"

AdditionalDependencies="hephaestusengine.lib"

OutputFile="$(OutDir)/LimitedConnectionsNodeLibrary.dll"

LinkIncremental="1"

AdditionalLibraryDirectories="..\hephaestusengine\release"

ModuleDefinitionFile="LimitedConnectionsNodeLibrary.def"

GenerateDebugInformation="TRUE"

SubSystem="2"

OptimizeReferences="2"

EnableCOMDATFolding="2"

ImportLibrary="$(OutDir)/LimitedConnectionsNodeLibrary.lib"

TargetMachine="1"/>

<Tool

Name="VCMIDLTool"/>

<Tool

Name="VCPostBuildEventTool"

CommandLine="copy release\LimitedConnectionsNodelibrary.dll ..\actors"/>

104

<Tool

Name="VCPreBuildEventTool"/>

<Tool

Name="VCPreLinkEventTool"/>

<Tool

Name="VCResourceCompilerTool"/>

<Tool

Name="VCWebServiceProxyGeneratorTool"/>

<Tool

Name="VCXMLDataGeneratorTool"/>

<Tool

Name="VCWebDeploymentTool"/>

<Tool

Name="VCManagedWrapperGeneratorTool"/>

<Tool

Name="VCAuxiliaryManagedWrapperGeneratorTool"/>

</Configuration>

</Configurations>

<References>

</References>

<Files>

<Filter

Name="Source Files"

Filter="cpp;c;cxx;def;odl;idl;hpj;bat;asm;asmx"

UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}">

<File

RelativePath=".\LimitedConnectionsNode.cpp">

</File>

<File

RelativePath=".\LimitedConnectionsNodeLibrary.cpp">

</File>

<File

RelativePath=".\LimitedConnectionsNodeLibrary.def">

</File>

</Filter>

<Filter

Name="Header Files"

Filter="h;hpp;hxx;hm;inl;inc;xsd"

UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}">

<File

RelativePath=".\LimitedConnectionsNode.h">

</File>

<File

RelativePath=".\LimitedConnectionsNodeLibrary.h">

</File>

</Filter>

<Filter

Name="Resource Files"

Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx"

UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}">

</Filter>

</Files>

<Globals>

</Globals>

</VisualStudioProject>

105

Bibliography

[1] C. Kerényi. The Gods of the Greeks, page 71. Thames and Hudson, 1951.

[2] Virus related statistics. http://www.securitystats.com/virusstats.

html.

[3] Virus history. http://www.cknow.com/vtutor/vthistory.htm.

[4] The cost of ’code red’: $1.2 billion. http://www.usatoday.com/tech/

news/2001-08-01-code-red-costs.htm.

[5] Ian Whalley, Bill Arnold, David Chess, John Morar, Alla Segal, and
Morton Swimmer. An environment for controlled worm replication and
analysis. http://researchweb.watson.ibm.com/antivirus/SciPapers/
VB2000INW.pdf.

[6] Giuseppe Serazzi and Stefano Zanero. Computer virus propaga-
tion models. http://www.elet.polimi.it/upload/zanero/papers/

zanero-serazzi-virus.pdf.

[7] Fred Cohen. Computer viruses - theory and experiments. http://vx.

netlux.org/lib/afc01.html.

[8] Jeffrey O. Kephart and Steve R. White. Directed-graph epidemiologi-
cal models of computer viruses. http://researchweb.watson.ibm.com/

antivirus/SciPapers/Kephart/VIRIEEE/virieee.gopher.html.

[9] Winfried Gleissner. A mathematical theory for the spread of computer
viruses, 1989.

[10] Peter S. Tippett. Computer virus replication, 1990.

[11] Alan Solomon. Epidemiology and computer viruses. http://ftp.cerias.
purdue.edu/pub/doc/viruses/epidemiology and viruses.txt.

[12] Yang Wang and Chenxi Wang. Modeling the effects of timing parameters
on virus propagation. http://www.ece.cmu.edu/∼chenxi/pub/worm.pdf.

106

[13] Jeffrey O. Kephart and Steve R. White. Measuring and modeling
computer virus prevalence. http://www.research.ibm.com/antivirus/

SciPapers/Kephart/PREV/prevalence.gopher.html.

[14] Matthew M. Williamson and Jasmin Léveillé. An epidemiological model
of virus spread and cleanup. www.hpl.hp.com/techreports/2003/

HPL-2003-39.pdf.

[15] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to own the
internet in your spare time. http://www.csd.uch.gr/∼hy558/reports/
jkapad-present2.ppt.

[16] Zesheng Chen, Lixin Gao, and Kevin Kwait. Modeling the spread of active
worms. www.ieee-infocom.org/2003/papers/46 03.PDF.

[17] Steve R. White. Open problems in computer virus research. Pre-
sented at Virus Bulletin Conference, Munich, Germany, October
1998. http://researchweb.watson.ibm.com/antivirus/SciPapers/

White/Problems/Problems.html.

[18] What is monte carlo simulation? http://www.decisioneering.com/

monte-carlo-simulation.html.

[19] Nicholas C. Weaver. Warhol worms: The potential for very fast internet
plagues. http://www.cs.berkeley.edu/∼nweaver/warhol.html.

[20] Bruce Ediger. Simulating network worms. http://www.users.qwest.net/
∼eballen1/nws/.

[21] Ddosvax project. http://www.tik.ee.ethz.ch/∼ddosvax/.

[22] Scalable simulation framework. http://www.ssfnet.org.

[23] Ssf.app.worm: A network worm modeling package for ssfnet. http://www.
cs.dartmouth.edu/∼mili/research/ssf/worm/.

[24] Michael Liljenstam, David M. Nicol, Vincent H. Berk, and Robert S. Gray.
Simulating realistic network worm traffic for worm warning system design
and testing. Presented in WORM ’03 in Washington, D.C. on October 27,
2003.

[25] Dan Geer, Rebecca Bace, Peter Gutmann, Perry Metzger, Charles P.
Pfleeger, John S. Quarterman, and Bruce Schneier. Cyberinsecurity: The
cost of monopoly. how the dominance of microsoft’s products poses a risk
to security. http://www.ccianet.org/papers/cyberinsecurity.pdf.

107

[26] Richard Ford. Microsoft, monopolies and migraines: The role of
monoculture. http://www.virusbtn.com/magazine/archives/200312/

monoculture.xml.

[27] Tom Liston. Welcome to my tarpit: The tactical and strate-
gic use of labrea. http://www.google.com/search?q=cache:

LnRKzqhIygQJ:sunsite.ccu.edu.tw/pub12/sourceforge/l/labrea/

LaBrea-Tom-Liston-Whitepaper-Welcome-to-my-tarpit.txt+liston+

Welcome+To+My+Tarpit&hl=en. Original article posted on Hackbusters.net
is no longer available.

[28] Jerry Banks, John S. Carson, and Barry L. Nelson. Discrete-Event System
Simulation, chapter 8. Prentice Hall, 1996.

[29] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudorandom number genera-
tor. http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/ARTICLES/
mt.pdf.

[30] Mersenne primes: History, theorems and lists. http://www.utm.edu/

research/primes/mersenne/.

[31] Linear feedback shift register. http://www.fact-index.com/l/li/

linear feedback shift register.html.

[32] Mersenne twister. http://home.ecn.ab.ca/∼jsavard/crypto/co4814.
htm.

[33] Kolmogorov-smirnov test. http://www.itl.nist.gov/div898/

handbook/prc/section2/prc212.htm.

[34] Jerry Banks, John S. Carson, and Barry L. Nelson. Discrete-Event System
Simulation, page 539. Prentice Hall, 1996.

[35] Chi-square goodness-of-fit test. http://www.itl.nist.gov/div898/

handbook/prc/section2/prc211.htm.

108

